Skip to main content

Acute Lymphoblastic Leukemia clinical trials at UCSF
31 in progress, 17 open to new patients

  • A Multi-Center Study Evaluating KTE-C19 in Pediatric and Adolescent Subjects With Relapsed/Refractory B-precursor Acute Lymphoblastic Leukemia

    open to eligible people ages 2–21

    This is a single arm, open-label, multi-center, phase 1/2 study, to determine the safety and efficacy of KTE-C19, an autologous anti-CD19 chimeric antigen receptor (CAR)-positive T cell therapy, in relapsed/refractory B-precursor acute lymphoblastic leukemia (ALL) in pediatric or adolescent subjects.

    San Francisco, California and other locations

  • A Multicenter Access and Distribution Protocol for Unlicensed Cryopreserved Cord Blood Units (CBUs)

    open to all eligible people

    This study is an access and distribution protocol for unlicensed cryopreserved cord blood units (CBUs) in pediatric and adult patients with hematologic malignancies and other indications.

    Oakland, California and other locations

  • A Study Evaluating KTE-C19 in Adult Subjects With Relapsed/Refractory B-precursor Acute Lymphoblastic Leukemia (r/r ALL) (ZUMA-3)

    open to eligible people ages 18 years and up

    This is a single arm, open-label, multi-center, phase 1/2 study, to determine the safety and efficacy of KTE-C19, an autologous anti-CD19 chimeric antigen receptor (CAR)-positive T cell therapy, in relapsed/refractory B-precursor acute lymphoblastic leukemia (ALL).

    San Francisco, California and other locations

  • A Trial of Temsirolimus With Etoposide and Cyclophosphamide in Children With Relapsed Acute Lymphoblastic Leukemia and Non-Hodgkins Lymphoma

    open to eligible people ages 1–21

    This is a phase I study of temsirolimus (Torisel) combined with dexamethasone, cyclophosphamide and etoposide in patients with relapsed acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL) or peripheral T-cell lymphoma (PTL).

    San Francisco, California and other locations

  • Azacitidine and Combination Chemotherapy in Treating Infants With Acute Lymphoblastic Leukemia and KMT2A Gene Rearrangement

    open to all eligible people

    This pilot phase II trial studies the side effects of azacitidine and combination chemotherapy in infants with acute lymphoblastic leukemia and KMT2A gene rearrangement. Drugs used in chemotherapy, such as methotrexate, prednisolone, daunorubicin hydrochloride, cytarabine, dexamethasone, vincristine sulfate, pegaspargase, hydrocortisone sodium succinate, azacitidine, cyclophosphamide, mercaptopurine, leucovorin calcium, and thioguanine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug may kill more cancer cells.

    Oakland, California and other locations

  • Blinatumomab in Treating Younger Patients With Relapsed B-cell Acute Lymphoblastic Leukemia

    open to eligible people ages 1–30

    This randomized phase III trial studies how well blinatumomab works compared with standard combination chemotherapy in treating patients with B-cell acute lymphoblastic leukemia that has returned after a period of improvement (relapsed). Monoclonal antibodies, such as blinatumomab, may interfere with the ability of tumor cells to grow and spread. It is not yet known whether standard combination chemotherapy is more effective than blinatumomab in treating relapsed B-cell acute lymphoblastic leukemia.

    Oakland, California and other locations

  • Blood Sample Markers of Reproductive Hormones in Assessing Ovarian Reserve in Younger Patients With Newly Diagnosed Lymphomas

    open to eligible females ages up to 29 years

    This clinical trial studies blood sample markers of reproductive hormones in assessing ovarian reserve in younger patients with newly diagnosed lymphomas. Studying samples of blood from patients with cancer in the laboratory may help measure the effect of curative therapy for lymphoma on ovarian failure.

    San Francisco, California and other locations

  • Chemotherapy With Liposomal Cytarabine CNS Prophylaxis for Adult Acute Lymphoblastic Leukemia & Lymphoblastic Lymphoma

    open to eligible people ages 18–60

    The objective of this protocol is to improve survival for adults with acute lymphoblastic leukemia or acute lymphoblastic lymphoma by reducing systemic and central nervous system (CNS) relapse with acceptable toxicity using intensive chemotherapy with liposomal cytarabine (Depocyt®) CNS prophylaxis.

    San Francisco, California and other locations

  • Collecting and Storing Malignant, Borderline Malignant Neoplasms, and Related Samples From Young Patients With Cancer

    open to eligible people ages up to 30 years

    This study is collecting and storing malignant, borderline malignant neoplasms, and related biological samples from young patients with cancer. Collecting and storing samples of tumor tissue, blood, and bone marrow from patients with cancer to study in the laboratory may help the study of cancer in the future.

    Oakland, California and other locations

  • Collecting and Storing Samples of Bone Marrow and Blood From Patients With Relapsed Acute Lymphoblastic Leukemia or Non-Hodgkin Lymphoma

    open to eligible people ages up to 30 years

    This research study is collecting and storing samples of bone marrow and blood from patients with relapsed acute lymphoblastic leukemia or relapsed non-Hodgkin lymphoma. Collecting and storing samples of bone marrow and blood from patients with cancer to study in the laboratory may help doctors learn more about cancer and help predict the recurrence of cancer.

    Oakland, California and other locations

  • Combination Chemotherapy With or Without Bortezomib in Treating Younger Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Stage II-IV T-Cell Lymphoblastic Lymphoma

    open to eligible people ages 2–30

    This randomized phase III trial compares how well combination chemotherapy works when given with or without bortezomib in treating patients with newly diagnosed T-cell acute lymphoblastic leukemia or stage II-IV T-cell lymphoblastic lymphoma. Bortezomib may help reduce the number of leukemia or lymphoma cells by blocking some of the enzymes needed for cell growth. It may also help chemotherapy work better by making cancer cells more sensitive to the drugs. It is not yet known if giving standard chemotherapy with or without bortezomib is more effective in treating T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.

    Oakland, California and other locations

  • Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    open to eligible people ages 6 months to 65 years

    This randomized phase II trial studies how well donor umbilical cord blood transplant with or without ex-vivo expanded cord blood progenitor cells works in treating patients with acute myeloid leukemia, acute lymphoblastic leukemia, chronic myelogenous leukemia, or myelodysplastic syndromes. Giving chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's cells. When the healthy stem cells and ex-vivo expanded cord blood progenitor cells are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. It is not yet known whether giving donor umbilical cord blood transplant plus ex-vivo expanded cord blood progenitor cells is more effective than giving a donor umbilical cord blood transplant alone.

    San Francisco, California and other locations

  • Natural History and Biology of Long-Term Late Effects Following Hematopoietic Cell Transplant for Childhood Hematologic Malignancies

    open to eligible people ages up to 22 years

    This is a prospective non-therapeutic study, assessing the long-term toxicity of pediatric HCT for hematologic malignancies. This study is a collaboration between the Pediatric Blood and Marrow Transplant Consortium (PBMTC), the Center for International Blood and Marrow Transplant Research (CIBMTR), the National Marrow Transplant Program (NMDP) and the Resource for Clinical Investigation in Blood and Marrow Transplantation (RCI-BMT) of the CIBMTR. The study will enroll pediatric patients who undergo myeloablative HCT for hematologic malignancies at PBMTC sites.

    Oakland, California and other locations

  • Phase I Trial of the Selective Inhibitor of Nuclear Export, KPT-330, in Relapsed Childhood ALL and AML

    open to eligible people ages 12 months to 21 years

    This research study involves participants who have acute lymphoblastic or acute myelogenous leukemia that has relapsed or has become resistant (or refractory) to standard therapies. This research study is evaluating a drug called KPT-330. Laboratory and other studies suggest that the study drug, KPT-330, may prevent leukemia cells from growing and may lead to the destruction of leukemia cells. It is thought that KPT-330 activates cellular processes that increase the death of leukemia cells. The main goal of this study is to evaluate the side effects of KPT-330 when it is administered to children and adolescents with relapsed or refractory leukemia.

    San Francisco, California and other locations

  • Risk-Adapted Chemotherapy in Treating Younger Patients With Newly Diagnosed Standard-Risk Acute Lymphoblastic Leukemia or Localized B-Lineage Lymphoblastic Lymphoma

    open to eligible people ages 1–30

    This partially randomized phase III trial studies different combinations of risk-adapted chemotherapy regimens and their side effects and comparing how well they work in treating younger patients with newly diagnosed standard-risk acute lymphoblastic leukemia or B-lineage lymphoblastic lymphoma that is found only in the tissue or organ where it began (localized). Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy), giving the drugs in different doses, and giving the drugs in different combinations may kill more cancer cells.

    Oakland, California and other locations

  • Risk-Based Classification System of Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    open to eligible people ages up to 30 years

    This research trial studies a risk-based classification system for patients with newly diagnosed acute lymphoblastic leukemia. Gathering health information about patients with acute lymphoblastic leukemia may help doctors learn more about the disease and plan the best treatment.

    Oakland, California and other locations

  • Talazoparib and Temozolomide in Treating Younger Patients With Refractory or Recurrent Malignancies

    open to eligible people ages 13 months to 30 years

    This phase I/II trial studies the side effects and best dose of talazoparib and temozolomide and to see how well they work in treating younger patients with tumors that have not responded to previous treatment (refractory) or have come back (recurrent). Talazoparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving talazoparib together with temozolomide may work better in treating younger patients with refractory or recurrent malignancies.

    San Francisco, California and other locations

  • Blinatumomab and Pembrolizumab for Adults With Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia With High Marrow Lymphoblasts

    Sorry, not currently recruiting here

    This is a Phase I/II study of blinatumomab in combination with pembrolizumab in adult patients with relapsed or refractory B-lineage ALL The primary objective of this study is to determine if the addition of pembrolizumab to blinatumomab improves the overall response rate (CR+ CRh) relative to blinatumomab alone in adult subjects with relapsed or refractory B-cell acute lymphoblastic leukemia with high bone marrow lymphoblast percentage (>50% lymphoblasts).

    San Francisco, California and other locations

  • Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk B Acute Lymphoblastic Leukemia and Ph-Like TKI Sensitive Mutations

    Sorry, currently not accepting new patients, but might later

    This randomized phase III trial studies how well combination chemotherapy works in treating young patients with newly diagnosed B acute lymphoblastic leukemia that is likely to come back or spread, and in patients with Philadelphia chromosome (Ph)-like tyrosine kinase inhibitor (TKI) sensitive mutations. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and giving the drugs in different doses and in different combinations may kill more cancer cells.

    Oakland, California and other locations

  • Vincristine Sulfate Liposome Injection (Marqibo®) in Combination With UK ALL R3 Induction Chemotherapy for Children, Adolescents, and Young Adults With Relapsed ALL

    Sorry, not currently recruiting here

    This is a pilot study utilizing Marqibo® (vincristine sulfate liposome injection) combined with dexamethasone, mitoxantrone and asparaginase (UK ALL R3) for relapsed acute lymphoblastic leukemia (ALL).

    San Francisco, California and other locations

  • Alisertib in Treating Young Patients With Recurrent or Refractory Solid Tumors or Leukemia

    Sorry, in progress, not accepting new patients

    This phase II trial is studying the side effects of and how well alisertib works in treating young patients with relapsed or refractory solid tumors or leukemia. Alisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    San Francisco, California and other locations

  • Chlorhexidine Gluconate Cleansing in Preventing Central Line Associated Bloodstream Infection and Acquisition of Multi-drug Resistant Organisms in Younger Patients With Cancer or Undergoing Donor Stem Cell Transplant

    Sorry, in progress, not accepting new patients

    This randomized phase III trial studies chlorhexidine gluconate cleansing to see how well it works compared to control cleansing in preventing central line associated bloodstream infection and acquisition of multi-drug resistant organisms in younger patients with cancer or undergoing donor stem cell transplant. Chlorhexidine gluconate may help reduce bloodstream infections and bacterial infections associated with the central line.

    Oakland, California and other locations

  • Combination Chemotherapy in Treating Young Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    Sorry, in progress, not accepting new patients

    This randomized phase III trial is studying different combination chemotherapy regimens and comparing how well they work in treating patients with newly diagnosed acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells.

    Oakland, California and other locations

  • Combination Chemotherapy in Treating Young Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma

    Sorry, in progress, not accepting new patients

    This randomized phase III trial is studying different combination chemotherapy regimens and their side effects and comparing how well they work in treating young patients with newly diagnosed T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma.

    Oakland, California and other locations

  • Combination Chemotherapy With or Without Lestaurtinib in Treating Younger Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    Sorry, in progress, not accepting new patients

    This phase III trial studies combination chemotherapy with or without lestaurtinib with to see how well they work in treating younger patients with newly diagnosed acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of stop cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Lestaurtinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether combination chemotherapy is more effective with or without lestaurtinib in treating acute lymphoblastic leukemia.

    Oakland, California and other locations

  • Combination Chemotherapy With or Without Rituximab in Treating Younger Patients With Stage III-IV Non-Hodgkin Lymphoma or B-Cell Acute Leukemia

    Sorry, in progress, not accepting new patients

    This randomized phase II/III trial studies how well combination chemotherapy with or without rituximab works in treating younger patients with stage III-IV non-Hodgkin lymphoma or B-cell acute leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibody, such as rituximab, may block cancer growth in different ways by targeting certain cells. It is not yet known whether combination chemotherapy together with rituximab is more effective in treating patients with non-Hodgkin lymphoma or B-cell acute leukemia.

    Oakland, California and other locations

  • Diagnostic Study of Patients With Acute Lymphoblastic Leukemia or Acute Promyelocytic Leukemia

    Sorry, in progress, not accepting new patients

    This research trial studies molecular genetic features in blood and tissue samples from patients with newly diagnosed acute lymphoblastic leukemia or acute promyelocytic leukemia. Studying samples of blood and tissue from patients with acute lymphoblastic leukemia or acute promyelocytic leukemia in the laboratory may help doctors identify and learn more about biomarkers related to cancer.

    San Francisco, California and other locations

  • Everolimus With Multiagent Re-Induction Chemotherapy in Pediatric Patients With ALL

    Sorry, in progress, not accepting new patients

    Laboratory and other studies suggest that, the study drug, Everolimus (RAD001), may prevent tumor cell growth and also may increase the efficacy of other chemotherapy drugs. Everolimus is approved for use in the United States for certain types of cancer, such as kidney cancer. It has been extensively studied in people with various types of cancer as a single agent (a drug that is used alone to treat the cancer) or in combination with a number of other drugs. Studies in adults with cancer have also evaluated Everolimus in combination with other anti-tumor drugs. Information from lab studies and some other clinical trials suggests that Everolimus may kill leukemia cells on its own, and also make it more likely that steroids (such as prednisone) are able to kill leukemia cells. In this research study, we are looking to learn more about how Everolimus works in combination with other drugs which are commonly used to treat relapsed acute lymphoblastic leukemia (prednisone, vincristine, PEG-asparaginase, and doxorubicin). The main goal of the study is to evaluate the side effects of this treatment combination in order to determine a safe dose of Everolimus which can be given with these other 4 drugs.

    San Francisco, California and other locations

  • Levofloxacin in Preventing Infection in Young Patients With Acute Leukemia Receiving Chemotherapy or Undergoing Stem Cell Transplantation

    Sorry, in progress, not accepting new patients

    This randomized phase III trial studies how well levofloxacin works in preventing infection in young patients with acute leukemia receiving chemotherapy or undergoing stem cell transplant. Giving antibiotics may be effective in preventing or controlling early infection in patients receiving chemotherapy or undergoing stem cell transplant for acute leukemia. It is not yet known whether levofloxacin is effective in preventing infection.

    San Francisco, California and other locations

  • Pediatric Philadelphia Positive Acute Lymphoblastic Leukemia

    Sorry, in progress, not accepting new patients

    The purpose of this study is to determine whether Dasatinib when added to standard chemotherapy is effective and safe in the treatment of pediatric philadelphia chromosome positive acute lymphoblastic leukemia

    San Francisco, California and other locations

  • Tacrolimus and Methotrexate With or Without Sirolimus in Preventing Graft-Versus-Host Disease in Young Patients Undergoing Donor Stem Cell Transplant for Acute Lymphoblastic Leukemia in Complete Remission

    Sorry, in progress, not accepting new patients

    This randomized phase III trial is studying tacrolimus, methotrexate, and sirolimus to see how well they work compared to tacrolimus and methotrexate in preventing graft-versus-host disease in young patients who are undergoing donor stem cell transplant for intermediate-risk or high-risk acute lymphoblastic leukemia in second complete remission and high risk acute lymphoblastic leukemia in first remission. Giving chemotherapy, such as thiotepa and cyclophosphamide, and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus, methotrexate, and sirolimus after the transplant may stop this from happening. It is not yet known whether tacrolimus and methotrexate are more effective with or without sirolimus in preventing graft-versus-host disease.

    Oakland, California and other locations