Congenital Heart Defects clinical trials at UCSF
8 in progress, 4 open to eligible people
Congenital heart defects are problems with the heart's structure that are present at birth. UCSF is testing a transcatheter heart valve for pulmonary valve dysfunction. UCSF is studying fetal aortic procedures for babies with very small left hearts. UCSF is measuring pulse oximeter readings by skin tone and testing a digital health program for congenital heart care.
COMPASSION S3 - Evaluation of the SAPIEN 3 Transcatheter Heart Valve in Patients With Pulmonary Valve Dysfunction
open to all eligible people
This study will demonstrate the safety and effectiveness of the Edwards Lifesciences SAPIEN 3/SAPIEN 3 Ultra RESILIA Transcatheter Heart Valve (THV) Systems in subjects with a dysfunctional right ventricular outflow tract (RVOT) conduit or previously implanted valve in the pulmonic position with a clinical indication for intervention.
San Francisco, California and other locations
Improving Congenital Heart Disease Care
open to eligible people ages 18 years and up
The theory-informed digital health intervention, called as "Empower My Congenital Health (EmpowerMyCH)" aims to activate and engage ACHD patients in building confidence toward navigating the adult healthcare system. This tool is built after incorporating the theories of behavior change, gathering inputs from target patients in all stages of its design and implementation. The key features of the tool include a digital medical passport, updated congenital information, community support, and patient stories and advice. The investigators aim to test the acceptability, feasibility, efficacy, and effectiveness of the intervention.
San Francisco, California
Fetal Aortic Valvuloplasty on Outcomes
open to all eligible people
In one of the most severe congenital heart defects, hypoplastic left heart syndrome (HLHS), the left ventricle is underdeveloped and the prognosis is worse than in most other heart defects. The underdevelopment can occur gradually during fetal growth caused by a narrowing of the aortic valve. At some international centers, such fetuses are treated with a balloon dilation of the narrowed valve, but there is no scientifically sound evidence that this treatment is effective. The aim of this study is: 1/ to evaluate whether balloon dilation during the fetal period of a narrowed aortic valve can reduce the risk of the left ventricle becoming underdeveloped and the baby being born with a so-called univentricular heart (HLHS); 2/ to investigate whether such treatment improves the prognosis for this group of children with a very complex and severe heart defect and 3/ to also describe side effects and risks in fetuses and mothers of the fetal procedure.
San Francisco, California and other locations
Evaluating Pulse Oximetry Bias in Children With Darker Skin Pigmentation
open to eligible people ages up to 21 years
In this prospective study, the investigators will enroll 154 children with arterial lines to determine the accuracy of pulse oximeters in children with darker skin pigmentation. Studies in adults suggest pulse oximeters may overestimate the true level of oxygenation in the blood as measured directly by co-oximetry. However, pediatric data are relatively limited. This study, which is funded by the FDA through the Stanford-UCSF (University of California San Francisco) Clinical Excellence in Regulatory Science and Innovation (CERSI) Program, will determine if the error/bias is associated with skin pigmentation and whether the error falls outside FDA standards. The broader purpose of the study is to work toward eliminating health disparities.
Palo Alto, California
ALTERRA: SAPIEN 3 THV With the Alterra Adaptive Prestent
Sorry, in progress, not accepting new patients
To demonstrate the safety and effectiveness of the Edwards Alterra Adaptive Prestent in conjunction with the Edwards SAPIEN 3 Transcatheter Heart Valve (THV) System in subjects with a dysfunctional right ventricular outflow tract/pulmonary valve (RVOT/PV) who are indicated for treatment of pulmonary regurgitation (PR). Following completion of enrollment, subjects will be eligible for enrollment in the continued access phase of the trial.
San Francisco, California and other locations
Methods of Pulmonary Blood Flow Augmentation in Neonates: Shunt Versus Stent (The COMPASS Trial)
Sorry, in progress, not accepting new patients
COMPASS is a prospective multicenter randomized interventional trial. Participants with ductal-dependent pulmonary blood flow will be randomized to receive either a systemic-to-pulmonary artery shunt or ductal artery stent. Block randomization will be performed by center and by single vs. two ventricle status. Participants will be followed through the first year of life.
Oakland, California and other locations
Fetal Cerebrovascular Autoregulation in Congenital Heart Disease and Association With Neonatal Neurobehavior
Sorry, not currently recruiting here
Determine 1) the impact of abnormal fetal cerebrovascular physiology with neurodevelopmental delay (ND) outcomes and 2) how this relationship is modified by patient and environmental factors such as chronic congenital heart disease (CCHD) lesion, maternal-fetal environment, and social determinants of heath (SDOH) in a diverse population using a multicenter design. Pregnant women will be approached during one of their fetal cardiology clinic visits.
San Francisco, California and other locations
Congenital Heart Disease GEnetic NEtwork Study (CHD GENES)
Sorry, in progress, not accepting new patients
Congenital heart defects (CHD) are the most common major human birth malformation, affecting ~8 per 1,000 live births. CHD are associated with significant morbidity and mortality, and are second only to infectious diseases in contributing to the infant mortality rate. Current understanding of the etiology of pediatric cardiovascular disorders is limited. The Congenital Heart Disease GEnetic NEtwork Study (CHD GENES) is a multi-center, prospective observational cohort study. Participants will be recruited from the Pediatric Cardiac Genomics Consortium's (PCGC) centers of the NHLBI-sponsored Bench to Bassinet (B2B) Program. Biological specimens will be obtained for genetic analyses, and phenotype data will be collected by interview and from medical records. State-of-the-art genomic technologies will be used to identify common genetic causes of CHD and genetic modifiers of clinical outcome. To accomplish this, the PCGC will develop and maintain a biorepository of specimens (DNA) and genetic data, along with detailed, phenotypic and clinical outcomes data in order to investigate relationships between genetic factors and phenotypic and clinical outcomes in congenital heart disease.
San Francisco, California and other locations
Our lead scientists for Congenital Heart Defects research studies include Anushree Agarwal, MBBS, MAS.
Last updated: