Skip to main content

Spinal Cord Injury clinical trials at UCSF

10 in progress, 5 open to eligible people

Showing trials for
  • Canadian-American Spinal Cord Perfusion Pressure and Biomarker Study

    open to eligible people ages 17 years and up

    This multicenter study will enroll 100 patients with acute traumatic cervical and thoracic SCI who have a lumbar intrathecal catheter inserted within 24 hours of their injury. The lumbar intrathecal catheter will be inserted pre-operatively for the measurement of ITP and the collection of cerebrospinal fluid (CSF) samples. SCPP will be calculated as the difference between MAP and the ITP. There are two important distinct yet related objectives in this prospective interventional study. 1. Determine the effect of SCPP maintenance ≥ 65 mmHg in acute SCI on neurologic recovery as measured by ASIA Impairment Scale (AIS) grade conversion and motor score improvement. 2. Collect CSF and blood samples for the measurement of neurochemical biomarkers and storage for future biomarker discovery and validation studies.

    San Francisco, California and other locations

  • ECoG BMI for Motor and Speech Control

    open to eligible people ages 21 years and up

    Test the feasibility of using electrocorticography (ECoG) signals to control complex devices for motor and speech control in adults severely affected by neurological disorders.

    San Francisco, California

  • MT-3921 in Subjects With Acute Traumatic Cervical Spinal Cord Injury

    open to eligible people ages 18-75

    The purpose of this study is to compare the efficacy and safety of intravenous (IV) infusions of MT-3921 to placebo in subjects with acute traumatic cervical spinal cord injury. Subjects meeting eligibility criteria will enter the 6-month double-blind period. Subjects will be randomized in a 2:1 ratio to receive MT-3921 or placebo in a double blind manner.

    San Francisco, California and other locations

  • Telenutrition for Individuals With SCI

    open to eligible people ages 20 years and up

    This study will provide nutrition counseling via FaceTime on an iPad to persons with traumatic spinal cord injury (SCI) who are overweight or obese and are at least one-year post-injury. Nutrition counseling may help participants to develop eating behaviors that match the participants' needs and help improve heart health. The purpose of this project is to decrease the risk of complications like obesity, high cholesterol, or diabetes, and explore associations between bowel and bladder function and nutrition. This study will require 3 in person visits that are about 3 months apart. The total length of the study is about 6 months and includes 3 months of telenutrition counseling.

    San Jose, California

  • Transcranial Magnetic Stimulation for Chronic Neuropathic Pain

    open to eligible people ages 18-80

    Chronic neuropathic pain is defined as pain caused by a lesion or disease of the somatosensory nervous system. It is highly prevalent, debilitating, and challenging to treat. Current available treatments have low efficacy, high side effect burden, and are prone to misuse and dependence. Emerging evidence suggests that the transition from acute to chronic neuropathic pain is associated with reorganization of central brain circuits involved in pain processing. Repetitive transcranial magnetic stimulation (rTMS) is a promising alternative treatment that uses focused magnetic pulses to non-invasively modulate brain activity, a strategy that can potentially circumvent the adverse effects of available treatments for pain. RTMS is FDA-approved for the treatment of major depressive disorder, obsessive-compulsive disorder, and migraine, and has been shown to reduce pain scores when applied to the contralateral motor cortex (M1). However, available studies of rTMS for chronic neuropathic pain typically show variable and often short-lived benefits, and many aspects of optimal treatment remain unknown, including ideal rTMS stimulation parameters, duration of treatment, and relationship to the underlying pain etiology. Here the investigators propose to evaluate the efficacy of high frequency rTMS to M1, the region with most evidence of benefit in chronic neuropathic pain, and to use functional magnetic resonance imaging (fMRI) to identify alternative rTMS targets for participants that do not respond to stimulation at M1. The central aim is to evaluate the pain relieving efficacy of multi-session high-frequency M1 TMS for pain. In secondary exploratory analyses, the investigator propose to investigate patient characteristic that are predictive of responsive to M1 rTMS and identify viable alternative stimulation targets in non-responders to M1 rTMS.

    San Francisco, California

  • Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain

    Sorry, in progress, not accepting new patients

    Chronic pain affects 1 in 4 US adults, and many cases are resistant to almost any treatment. Deep brain stimulation (DBS) holds promise as a new option for patients suffering from treatment-resistant chronic pain, but traditional approaches target only brain regions involved in one aspect of the pain experience and provide continuous 24/7 brain stimulation which may lose effect over time. By developing new technology that targets multiple, complimentary brain regions in an adaptive fashion, the investigators will test a new therapy for chronic pain that has potential for better, more enduring analgesia.

    San Francisco, California

  • Closed-loop Deep Brain Stimulation to Treat Refractory Neuropathic Pain

    Sorry, in progress, not accepting new patients

    Deep brain stimulation (DBS) holds promise as a new option for patients suffering from treatment-resistant chronic pain, but current technology is unable to reliably achieve long-term pain symptom relief. A "one-size-fits-all" approach of continuous, 24/7 brain stimulation has helped patients with some movement disorders, but the key to reducing pain may be the activation of stimulation only when needed, as this may help keep the brain from adapting to stimulation effects. By expanding the technological capabilities of an investigative brain stimulation device, the investigators will enable the delivery of stimulation only when pain signals in the brain are high, and then test whether this more personalized stimulation leads to reliable symptom relief for chronic pain patients over extended periods of time.

    San Francisco, California

  • Telepsychology in Spinal Cord Injury

    Sorry, in progress, not accepting new patients

    This study will determine the effectiveness of tele-psychology in treating persons with spinal cord injury (SCI) with depressed mood in the early period post-rehabilitation discharge. Depression among individuals with SCI is the most common psychological condition following an injury; 22% of civilians with SCI and 28% of veterans with SCI experience depression after injury, which is higher than the able-bodied population (Williams 2015; Ullrich 2014). Individuals with SCI face many barriers in receiving psychotherapy, such as lack of accessible transportation, unfamiliarity with community resources, or stigma associated with seeking treatment for depression, which this project aims to address. Cognitive behavior therapy (CBT), which helps people develop different ways of thinking and behaving to reduce their psychological distress, will be provided via iPad FaceTime by a psychologist with expertise in working with persons with SCI. The objectives of the proposed project are to reduce depressive symptoms, decrease associated symptoms of anxiety, and to improve satisfaction with life with CBT provided via tele-psychology. The secondary objective is to show intermediate efficacy of tele-psychology in persons with SCI with depressed mood.

    San Jose, California

  • Incomplete Cervical SCI Without Instability

    Sorry, not currently recruiting here

    A multicenter, international, prospective, observational case series patient cohort with incomplete cervical SCI without instability will be enrolled to obtain information and data that could inform the feasibility of administering a set of additional core and optional outcome assessments in cervical SCI patients to capture the aspects of neurologic impairment. Baseline, intraoperative, and postoperative characteristics, including demographics, injury details, treatment details, neurological assessments, gait and balance assessments and upper extremity assessments, will be recorded for adult patients.

    San Francisco, California and other locations

  • Transforming Research and Clinical Knowledge in Spinal Cord Injury

    Sorry, accepting new patients by invitation only

    The overall goal of Transforming Research and Clinical Knowledge in Spinal Cord Injury (TRACK-SCI) study is to determine the relationships among the clinical, neuroimaging, cognitive, genetic and proteomic biomarker characteristics of acute traumatic spinal cord injury (SCI). TRACK-SCI seeks to combine high quality care variables with high density physiology data collection to better understand diagnose, characterize, and track the temporal profile of recovery for SCI patients. The Investigators are enrolling patients within 24 hours of injury who present to a TRACK-SCI site with a spinal cord injury that meets eligibility criteria.

    Fresno, California and other locations

Our lead scientists for Spinal Cord Injury research studies include .

Last updated: