As most adolescents visit a healthcare provider once a year, health behavior change interventions linked to clinic-based health information technologies hold significant promise for improving healthcare quality and subsequent behavioral health outcomes for adolescents (Baird, 2014, Harris, 2017). Recognizing the potential to leverage recent advances in machine learning and interactive narrative environments, the investigators are now well positioned to design health behavior change systems that extend the reach of clinicians to realize significant impacts on behavior change for adolescent preventive health.
The proposed project centers on the design, development, and evaluation of a clinically-integrated health behavior change system for adolescents. CHANGEGRADIENTS will introduce an innovative reinforcement learning-based feedback loop in which adolescent patients interact with personalized behavior change interactive narratives that are dynamically personalized and realized in a rich narrative-centered virtual environment. CHANGEGRADIENTS will iteratively improve its behavior change models using policy gradient methods for Reinforcement Learning (RL) designed to optimize adolescents' achieved behavior change outcomes. This in turn will enable CHANGEGRADIENTS to generate more effective behavior change narratives, which will then lead to further improved behavior change outcomes. With a focus on risky behaviors and an emphasis on alcohol use, adolescents will interact with CHANGEGRADIENTS to develop an experiential understanding of the dynamics and consequences of their alcohol use decisions. The proposed project holds significant transformative potential for (1) producing theoretical and practical advances in how to realize significant impacts on adolescent health behavior change through novel interactive narrative technologies integrated with policy-based reinforcement learning, (2) devising sample-efficient policy gradient methods for RL that produce personalized behavior change experiences by integrating theoretically based models of health behavior change with data-driven models of interactive narrative generation, and (3) promoting new models for integrating personalized health behavior change technologies into clinical care that extend the effective reach of clinicians.
Promoting Adolescent Health Behavior Change With Clinically Integrated Sample-Efficient Policy Gradient Methods
Because the majority of adolescent health problems are amenable to behavioral intervention and most adolescents visit a healthcare provider once a year, health behavior change interventions linked to clinic- based health information technologies hold significant promise for improving healthcare quality and subsequent behavioral health outcomes for adolescents. Recognizing the potential to leverage advances in machine learning and virtual narrative environments, the field of health behavior change is now well-positioned to design health behavior change systems that extend the reach of clinicians to realize significant impacts on behavior change for adolescent preventive health.
With a focus on risky behaviors and an emphasis on alcohol use, the project has two specific aims: (1) design, develop, and iteratively refine a policy-based reinforcement learning behavior change system for preventive adolescent health, and (2) investigate the impact of a clinically integrated sample-efficient policy gradient-based behavior change system on adolescent behavior. The project will culminate with an investigation of the behavioral effects of the CHANGEGRADIENTS system using adolescent patients recruited from two outpatient primary care clinics within the UCSF Department of Pediatrics: Mt. Zion Pediatrics and the Adolescent/Young Adult Clinic. It is hypothesized that adolescents who interact with CHANGEGRADIENTS will reduce number of days of alcohol use, reduce binge drinking, and increase self-efficacy to engage in healthy behavior and avoid risky substance use.
It is anticipated that CHANGEGRADIENTS will provide a testbed for a broad range of health behavior change research and serve as the foundation for next-generation personalized preventive healthcare through computationally-enabled behavior change that is designed to be tightly integrated into clinical practice workflow. By taking advantage of the high degree of adaptive interactivity offered by its personalized behavior change environment, CHANGEGRADIENTS holds significant potential for creating compelling interactions that promote self-efficacy and engagement in healthy lifestyle behaviors to prevent cancer through improving cancer-related behaviors and risk factors.