Deep Brain Stimulation clinical trials at UCSF
11 in progress, 8 open to eligible people
Cerebellar Deep Brain Stimulation for Movement Disorders in Cerebral Palsy in Children and Young Adults
open to eligible people ages 7-25
The purpose of this study is to test the safety of placing Deep Brain Stimulators (DBS) in a part of the brain called the cerebellum and using electrical stimulation of that part of the brain to treat movement symptoms related to cerebral palsy. Ten children and young adults with dyskinetic cerebral palsy will be implanted with a Medtronic Percept Primary Cell Neurostimulator. We will pilot videotaped automated movement recognition techniques and formal gait analysis, as well as collect and characterize each subject's physiological and neuroimaging markers that may predict hyperkinetic pathological states and their response to therapeutic DBS.
San Francisco, California
Closed-Loop Deep Brain Stimulation for Major Depression
open to eligible people ages 22-70
Neurons are specialized types of cells that are responsible for carrying out the functions of the brain. Neurons communicate with electrical signals. In diseases such as major depression this electrical communication can go awry. One way to change brain function is using electrical stimulation to help alter the communication between groups of neurons in the brain. The purpose of this study is to test a personalized approach to brain stimulation as an intervention for depression. The study researchers will use a surgically implanted device to measure each individual's brain activity related to his/her depression. The researchers will then use small electrical impulses to alter that brain activity and measure whether these changes help reduce depression symptoms. This study is intended for patients with major depression whose symptoms have not been adequately treated with currently available therapies. The device used in this study is called the NeuroPace Responsive Neurostimulation (RNS) System. It is currently FDA approved to treat patients with epilepsy. The study will test whether personalized responsive neurostimulation can safely and effectively treat depression.
San Francisco, California
Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain
open to eligible people ages 22-80
Chronic pain affects 1 in 4 US adults, and many cases are resistant to almost any treatment. Deep brain stimulation (DBS) holds promise as a new option for patients suffering from treatment-resistant chronic pain, but traditional approaches target only brain regions involved in one aspect of the pain experience and provide continuous 24/7 brain stimulation which may lose effect over time. By developing new technology that targets multiple, complimentary brain regions in an adaptive fashion, the investigators will test a new therapy for chronic pain that has potential for better, more enduring analgesia.
San Francisco, California
Cortical Stimulation to Treat Obsessive Compulsive Disorder
open to eligible people ages 22-75
The purpose of this study is to identify abnormal brain signals associated with Obsessive Compulsive Disorder (OCD) and psychiatric symptoms and to investigate novel therapeutic stimulation sites. While treating OCD with standard deep brain stimulation (DBS) therapy, the investigators will also monitor the activity of the anterior cingulate and prefrontal cortex, a region known be involved with OCD, decision making, and emotion regulation, and the investigators will identify abnormal activity corresponding to the severity of a patient's OCD. The investigators will also investigate whether it is possible for stimulation delivered to these parts of the brain can improve OCD symptoms. These investigations have the potential to aid in the development of improved forms of DBS that can better target abnormal OCD brain signatures in the future. The investigators will implant a cortical electrode in addition to the ALIC DBS electrode and connect these to an implantable pulse generator that care store field potential data (Medtronic Percept). The decision whether the lead is placed in the prefrontal or cingulate cortex bilaterally will be based upon considerations of the surgical risks for a particular patient based upon their anatomy and the required surgical approach. At multiple time points post-implantation up to 2 years, in our clinic or patient's homes, cortical and subcortical signals will be recorded. Data will be collected while patient are resting or engaged in symptom provocation tasks, emotional/cognitive tasks while cortical stimulation is on and off. In addition to brain signal recordings, symptoms will be assessed using validated questionnaires and tasks to allow identification of neurophysiological correlates of OCD symptoms.
San Francisco, California
Medtronic Deep Brain Stimulation (DBS) Therapy for Epilepsy Post-Approval Study (EPAS)
open to eligible people ages 18 years and up
The purpose of this post-approval study is to further evaluate the long-term safety and effectiveness of Medtronic DBS therapy for epilepsy on seizure reduction in newly implanted participants through 3 years of follow-up.
San Francisco, California and other locations
Personalized DBS for OCD Guided by Stereoencephalography Mapping
open to eligible people ages 22-75
This is a double-blinded, randomized, crossover study design for SEEG-guided 4-lead DBS for treatment-refractory OCD, followed by open label stimulation for an additional 6 months. The study will be conducted in 3 stages: Stage 1 will consist of SEEG brain mapping and optimization of stimulation parameters. Stage 2 will consist of 4-lead DBS surgery with bilateral IPGs and further optimization of stimulation parameters. Stage 3 will be randomized, crossover treatment, followed by open label treatment.
San Francisco, California
Understanding Motivation in Parkinson's Patients Through Neurophysiology
open to eligible people ages 18 years and up
The study's aim is to better understand motivation and value-based decision making in Parkinson's patients through neurophysiology using Medtronic's Percept PC DBS device.
San Francisco, California
Deep Brain Stimulation (DBS) Retrospective Outcomes Study
open to all eligible people
The primary objective of this study is to characterize real-world clinical outcomes of Deep Brain Stimulation (DBS) using retrospective review of de-identified patient records.
San Francisco, California and other locations
Adaptive Deep Brain Stimulation to Improve Motor and Gait Functions in Parkinson's Disease
Sorry, in progress, not accepting new patients
This is a single-center phase I clinical study aiming to improve gait functions in patients with Parkinson's disease (PD) by using adaptive neurostimulation to the pallidum. The investigators will use a bidirectional deep brain stimulation device with sensing and stimulation capabilities to 1) decode the physiological signatures of gait and gait adaptation by recording neural activities from the motor cortical areas and the globus pallidus during natural walking and a gait adaptation task, and 2) develop an adaptive deep brain stimulation (DBS) paradigm to selectively stimulate the pallidum during different phases of the gait cycle and measure improvements in gait parameters. This is the first exploration of network dynamics of gait in PD using chronically implanted cortical and subcortical electrodes. In addition to providing insights into a fundamental process, the proposed therapy will deliver personalized neurostimulation based on individual physiological biomarkers to enhance locomotor skills in patients with PD. Ten patients with idiopathic Parkinson's disease undergoing evaluation for DBS implantation will be enrolled in this single treatment arm study.
San Francisco, California
Closed-loop Deep Brain Stimulation to Treat Refractory Neuropathic Pain
Sorry, in progress, not accepting new patients
Deep brain stimulation (DBS) holds promise as a new option for patients suffering from treatment-resistant chronic pain, but current technology is unable to reliably achieve long-term pain symptom relief. A "one-size-fits-all" approach of continuous, 24/7 brain stimulation has helped patients with some movement disorders, but the key to reducing pain may be the activation of stimulation only when needed, as this may help keep the brain from adapting to stimulation effects. By expanding the technological capabilities of an investigative brain stimulation device, the investigators will enable the delivery of stimulation only when pain signals in the brain are high, and then test whether this more personalized stimulation leads to reliable symptom relief for chronic pain patients over extended periods of time.
San Francisco, California
Motor Network in Parkinson's Disease and Dystonia: Mechanisms of Therapy
Sorry, in progress, not accepting new patients
This is an exploratory pilot study to identify neural correlates of specific motor signs in Parkinson's disease (PD) and dystonia, using a novel totally implanted neural interface that senses brain activity as well as delivering therapeutic stimulation. Parkinson's disease and isolated dystonia patients will be implanted unilaterally or bilaterally with a totally internalized bidirectional neural interface, Medtronic Summit RC+S. This study includes three populations: ten PD patients undergoing deep brain stimulation in the subthalamic nucleus (STN), ten PD patients with a globus pallidus (GPi) target and five dystonia patients. All groups will test a variety of strategies for feedback-controlled deep brain stimulation, and all patients will undergo a blinded, small pilot clinical trial of closed-loop stimulation for thirty days.
San Francisco, California
Our lead scientists for Deep Brain Stimulation research studies include Edward Chang, M.D. Doris Wang, MD, PhD Philip Starr Andrew M Lee, MD, PhD Simon J Little, MBBS, PhD Prasad Shirvalkar Andrew Krystal, MD, MS.
Last updated: