Myelodysplastic Syndrome clinical trials at UCSF
15 in progress, 5 open to eligible people
CPX-351 and Glasdegib for Newly Diagnosed Acute Myelogenous Leukemia With MDS Related Changes or Therapy-related Acute Myeloid Leukemia
open to eligible people ages 18 years and up
This is a phase 2 single-arm, open-label clinical trial determining efficacy of CPX-351 in combination with Glasdegib in subjects with Acute Myelogenous Leukemia with myelodysplastic syndrome related changes or therapy-related acute myeloid leukemia.
San Francisco, California and other locations
Highest Dose of Uproleselan in Combination With Fludarabine and Cytarabine for Patients With Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Mixed Phenotype Acute Leukemia Relapsed or Refractory and That Expresses E-selectin Ligand on the Cell Membrane
open to eligible people ages up to 17 years
This phase I trial tests the safety, side effects, and best dose of uproleselan in combination with fludarabine and cytarabine in treating patients with acute myeloid leukemia, myelodysplastic syndrome or mixed phenotype acute leukemia that has come back (relapsed) or does not respond to treatment (refractory) and that expresses E-selectin ligand on the cell membrane. Uproleselan binds to E-selectin expressed on endothelial cells of the bone marrow and prevents their interaction with selectin-E ligand-expressing cancer cells. This may prevent leukemia cells from being sequestered in the bone marrow niche and escaping the effect of chemotherapy. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving uproleselan in combination with fludarabine and cytarabine may enhance their activity.
San Francisco, California and other locations
HLA-Mismatched Unrelated Donor Hematopoietic Cell Transplantation With Post-Transplantation Cyclophosphamide
open to eligible people ages 1 year and up
This is a prospective, multi-center, Phase II study of hematopoietic cell transplantation (HCT) using human leukocyte antigen (HLA)-mismatched unrelated donors (MMUD) for peripheral blood stem cell transplant in adults and bone marrow stem cell transplant in children. Post-transplant cyclophosphamide (PTCy), tacrolimus and mycophenolate mofetil (MMF) will be used for for graft versus host disease (GVHD) prophylaxis. This trial will study how well this treatment works in patients with hematologic malignancies.
San Francisco, California and other locations
Mismatched Related Donor Versus Matched Unrelated Donor Stem Cell Transplantation for Children, Adolescents, and Young Adults With Acute Leukemia or Myelodysplastic Syndrome
open to eligible people ages 6 months to 21 years
This phase III trial compares hematopoietic (stem) cell transplantation (HCT) using mismatched related donors (haploidentical [haplo]) versus matched unrelated donors (MUD) in treating children, adolescents, and young adults with acute leukemia or myelodysplastic syndrome (MDS). HCT is considered standard of care treatment for patients with high-risk acute leukemia and MDS. In HCT, patients are given very high doses of chemotherapy or radiation therapy, which is intended to kill cancer cells that may be resistant to more standard doses of chemotherapy; unfortunately, this also destroys the normal cells in the bone marrow, including stem cells. After the treatment, patients must have a healthy supply of stem cells reintroduced or transplanted. The transplanted cells then reestablish the blood cell production process in the bone marrow. The healthy stem cells may come from the blood or bone marrow of a related or unrelated donor. If patients do not have a matched related donor, doctors do not know what the next best donor choice is or if a haplo related donor or MUD is better. This trial may help researchers understand whether a haplo related donor or a MUD HCT for children with acute leukemia or MDS is better or if there is no difference at all.
Oakland, California and other locations
Tagraxofusp in Pediatric Patients With Relapsed or Refractory CD123 Expressing Hematologic Malignancies
open to eligible people ages 1-21
Tagraxofusp is a protein-drug conjugate consisting of a diphtheria toxin redirected to target CD123 has been approved for treatment in pediatric and adult patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). This trial aims to examine the safety of this novel agent in pediatric patients with relapsed/refractory hematologic malignancies. The mechanism by which tagraxofusp kills cells is distinct from that of conventional chemotherapy. Tagraxofusp directly targets CD123 that is present on tumor cells, but is expressed at lower or levels or absent on normal hematopoietic stem cells. Tagraxofusp also utilizes a payload that is not cell cycle dependent, making it effective against both highly proliferative tumor cells and also quiescent tumor cells. The rationale for clinical development of tagraxofusp for pediatric patients with hematologic malignancies is based on the ubiquitous and high expression of CD123 on many of these diseases, as well as the highly potent preclinical activity and robust clinical responsiveness in adults observed to date. This trial includes two parts: a monotherapy phase and a combination chemotherapy phase. This design will provide further monotherapy safety data and confirm the FDA approved pediatric dose, as well as provide safety data when combined with chemotherapy. The goal of this study is to improve survival rates in children and young adults with relapsed hematological malignancies, determine the recommended phase 2 dose (RP2D) of tagraxofusp given alone and in combination with chemotherapy, as well as to describe the toxicities, pharmacokinetics, and pharmacodynamic properties of tagraxofusp in pediatric patients. About 54 children and young adults will participate in this study. Patients with Down syndrome will be included in part 1 of the study.
San Francisco, California and other locations
Cord Blood Transplant With Dilanubicel for the Treatment of HIV Positive Hematologic Cancers
Sorry, not currently recruiting here
This phase II trial studies the side effects of a cord blood transplant using dilanubicel and to see how well it works in treating patients with human immunodeficiency virus (HIV) positive hematologic (blood) cancers. After a cord blood transplant, the immune cells, including white blood cells, can take a while to recover, putting the patient at increased risk of infection. Dilanubicel consists of blood stem cells that help to produce mature blood cells, including immune cells. Drugs used in chemotherapy, such as fludarabine, cyclophosphamide, and thiotepa, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Total body irradiation is a type of whole-body radiation. Giving chemotherapy and total-body irradiation before a cord blood transplant with dilanubicel may help to kill any cancer cells that are in the body and make room in the patient's bone marrow for new stem cells to grow and reduce the risk of infection.
San Francisco, California and other locations
KIR Favorable Mismatched Haplo Transplant and KIR Polymorphism in ALL/AML/MDS Allo-HCT Children
Sorry, accepting new patients by invitation only
This is a phase II, open-label, non-randomized, prospective study of haploidentical transplantation using KIR-favorable donors for children with acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) undergoing allogeneic hematopoietic cell transplantation (HCT). The relationship of KIR2DL1 polymorphisms to survival in children with these diseases undergoing any approach to allogeneic HCT during the study time frame will also be determined.
Oakland, California and other locations
Matched Targeted Therapy For High-Risk Leukemias and Myelodysplastic Syndrome
Sorry, in progress, not accepting new patients
This research study is seeking to gain new knowledge about Recurrent, Refractory, or High Risk Leukemias in children and young adults. This study is evaluating the use of specialized testing called leukemia profiling. Once the profiling is performed, the results are evaluated by an expert panel of physicians, scientists and pharmacists. This may result in a recommendation for a specific cancer therapy or a clinical trial called matched targeted therapy (MTT). The results of the leukemia profiling and, if applicable, the MTT recommendation will be communicated to the participant's primary oncologist.
San Francisco, California and other locations
Pevonedistat, Azacitidine, Fludarabine Phosphate, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome
Sorry, in progress, not accepting new patients
This phase I trial studies the side effects and how well pevonedistat, azacitidine, fludarabine phosphate, and cytarabine work in treating patients with acute myeloid leukemia or myelodysplastic syndrome that has come back (relapsed) or has not responded to treatment (refractory). Pevonedistat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as azacitidine, fludarabine phosphate, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and pevonedistat may work better in treating patients with acute myeloid leukemia or myelodysplastic syndrome.
San Francisco, California and other locations
Response-Based Chemotherapy in Treating Newly Diagnosed Acute Myeloid Leukemia or Myelodysplastic Syndrome in Younger Patients With Down Syndrome
Sorry, in progress, not accepting new patients
This phase III trial studies response-based chemotherapy in treating newly diagnosed acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Response-based chemotherapy separates patients into different risk groups and treats them according to how they respond to the first course of treatment (Induction I). Response-based treatment may be effective in treating acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome while reducing the side effects.
Oakland, California and other locations
APVO436 in Patients With AML or MDS
Sorry, not currently recruiting here
The primary objective of the Phase 1 part of the study is to determine the recommended dose of APVO436 administered intravenously to patients with AML or MDS. The primary objective of the Phase 1b part of the study is to evaluate the clinical activity of APVO436 in patients with AML or MDS. APVO436 is being studied in this Phase 1b, open-label, multi-center, two-part dose-escalation/dose expansion study to evaluate the safety, pharmacokinetic/pharmacodynamic (PK/PD), and clinical activity of APVO436 in patients with AML and MDS. The study will be conducted in 2 parts. The first part of this Phase 1B study is an open-label, multiple dose ascending dose escalation phase to determine the recommended dose (RP2D) level of APVO436 for future Phase 2 studies. The goal of the dose expansion phase of the study (Part 2) is to (i) evaluate the safety and tolerability of APVO436 at the RP2D level when it is used as an adjunct to the standard of care and (ii) obtain a preliminary assessment of the anti-leukemia activity of APVO436-containing experimental monotherapy and combination therapy modalities. Study Objectives for Dose Escalation Phase - Primary Objectives are to: 1. Determine the RP2D level of APVO436 administered intravenously (IV) in patients with AML or MDS, and 2. Evaluate the safety and tolerability of APVO436 at the RP2D level when it is used as an adjunct to the standard of care and obtain a preliminary assessment of the anti-leukemia activity of APVO436-containing experimental monotherapy and combination therapy modalities. - Secondary Objectives are to: 1. Define the safety profile and immunogenicity of APVO436; to determine the PK/PD of APVO436; to evaluate the clinical activity of APVO436 in AML and MDS patients. 2. Further evaluate the safety profile and immunogenicity of APVO436 and the PK/PD of APVO436 and the relationship between PK/PD and clinical response. Study Objectives for Dose Expansion Phase - Primary Objective is to evaluate the safety and tolerability of APVO436 at the RP2D level when it is used as an adjunct to the standard of care. - Secondary Objective is to obtain a preliminary assessment of the anti-leukemia activity of APVO436-containing experimental monotherapy and combination therapy modalities.
San Francisco, California and other locations
TAC/MTX vs. TAC/MMF/PTCY for Prevention of Graft-versus-Host Disease and Microbiome and Immune Reconstitution Study (BMT CTN 1703/1801)
Sorry, in progress, not accepting new patients
1703: The study is designed as a randomized, phase III, multicenter trial comparing two acute graft-versus-host disease (aGVHD) prophylaxis regimens: tacrolimus/methotrexate (Tac/MTX) versus post-transplant cyclophosphamide/tacrolimus/mycophenolate mofetil (PTCy/Tac/MMF) in the setting of reduced intensity conditioning (RIC) allogeneic peripheral blood stem cell (PBSC) transplantation. 1801: The goal of this protocol is to test the primary hypothesis that the engraftment stool microbiome diversity predicts one-year non-relapse mortality in patients undergoing reduced intensity allogeneic HCT.
San Francisco, California and other locations
Collecting and Storing Blood, Bone Marrow, and Other Samples From Patients With Acute Leukemia, Chronic Leukemia, or Myelodysplastic Syndromes
Sorry, in progress, not accepting new patients
As one of the nation's largest cooperative cancer treatment groups, the Alliance for Clinical Trials in Oncology (Alliance) is in a unique position to organize a Leukemia Tissue Bank. The member institutions diagnose hundreds of patients with leukemia or myelodysplastic syndrome each year, and uniformly treat these patients with chemotherapy regimens. The Alliance offers centralized data management for the clinical history, the classification of the leukemia and myelodysplastic syndrome, cytogenetics, flow cytometric analysis, treatment and follow-up. The highly skilled health care providers at each member institution are familiar with obtaining informed consent, completing data questionnaires and shipping specimens. There currently exists a central processing facility where samples are prepared for a variety of cellular and molecular studies. Hence, the patient resources, the health care providers, and a processing facility for a Leukemia Tissue Bank are all in place. What is needed, however, and is addressed in the current protocol, is a formal mechanism to procure bone marrow, blood and normal tissue from patients with hematologic malignancies who are to be enrolled on Alliance (Cancer and Leukemia Group B [CALGB]) treatment studies.
San Francisco, California and other locations
Cytogenetic Studies in Acute Leukemia and Multiple Myeloma
Sorry, in progress, not accepting new patients
Chromosomal analysis or the study of genetic differences in patients previously untreated with AML, ALL, MDS or MM may be helpful in the diagnosis and classification of disease. It may also improve the ability to predict the course of disease and the selection of therapy. Institutions must have either an Alliance-approved cytogeneticist or an agreement from an Alliance-approved main member cytogenetics laboratory to enroll a patient on CALGB 8461. The Alliance Approved Institutional Cytogeneticists list is posted on the Alliance for Clinical Trials in Oncology website.
San Francisco, California and other locations
Natural History and Biology of Long-Term Late Effects Following Hematopoietic Cell Transplant for Childhood Hematologic Malignancies
Sorry, in progress, not accepting new patients
This is a prospective non-therapeutic study, assessing the long-term toxicity of pediatric HCT for hematologic malignancies. This study is a collaboration between the Pediatric Blood and Marrow Transplant Consortium (PBMTC), the Center for International Blood and Marrow Transplant Research (CIBMTR), the National Marrow Transplant Program (NMDP) and the Resource for Clinical Investigation in Blood and Marrow Transplantation (RCI-BMT) of the CIBMTR. The study will enroll pediatric patients who undergo myeloablative HCT for hematologic malignancies at PBMTC sites.
Oakland, California and other locations
Our lead scientists for Myelodysplastic Syndrome research studies include Nahal R. Lalefar Elliot Stieglitz Lloyd Damon Timothy Henrich Lena Winestone Kieuhoa T. Vo Michelle Hermiston, MD.
Last updated: