Neuroendocrine Tumor clinical trials at UCSF
13 in progress, 5 open to eligible people
Lenvatinib Plus Pembrolizumab in Well Differentiated G3 Neuroendocrine Tumors
open to eligible people ages 18 years and up
This is the first study to be done in a newly described class of neuroendocrine tumors known as well-differentiated grade 3 neuroendocrine tumors (WD G3 NET). First described in the pancreas in 2017, the classification was broadened to include gastrointestinal tract tumors in 2019. Recent data suggest an equivalent subtype exists in the lungs (NEC with carcinoid morphology). WD G3 NETs can occur de novo as well as the result of grade progression over time. This is a single arm, multi-site, Phase II study in biomarker "unselected" participants. This study will also incorporate serial blood samples, tumor biopsies, and special imaging to better understand the impact of therapy on the tumor and microenvironment. Hyperpolarized (HP) 13C-pyruvate magnetic resonance imaging (MRI) - a novel non-radioactive imaging modality able to provide in vivo measurements of the pyruvate-to-lactate conversion rate (kpl).
San Francisco, California
RYZ101 Compared with SOC in Pts W Inoperable SSTR+ Well-differentiated GEP-NET That Has Progressed Following 177Lu-SSA Therapy
open to eligible people ages 18 years and up
This study aims to determine the safety, pharmacokinetics (PK) and recommended Phase 3 dose (RP3D) of RYZ101 in Part 1, and the safety, efficacy, and PK of RYZ101 compared with investigator-selected standard of care (SoC) therapy in Part 2 in subjects with inoperable, advanced, well-differentiated, somatostatin receptor expressing (SSTR+) gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have progressed following treatment with Lutetium 177-labelled somatostatin analogue (177Lu-SSA) therapy, such as 177Lu-DOTATATE or 177Lu-DOTATOC (177Lu-DOTATATE/TOC), or 177Lu-high affinity [HA]-DOTATATE.
San Francisco, California and other locations
Testing Lutetium Lu 177 Dotatate in Patients With Somatostatin Receptor Positive Advanced Bronchial Neuroendocrine Tumors
open to eligible people ages 18 years and up
This phase II trial studies the effect of lutetium Lu 177 dotatate compared to the usual treatment (everolimus) in treating patients with somatostatin receptor positive bronchial neuroendocrine tumors that have spread to other places in the body (advanced). Radioactive drugs, such as lutetium Lu 177 dotatate, may carry radiation directly to tumor cells and may reduce harm to normal cells. Lutetium Lu 177 dotatate may be more effective than everolimus in shrinking or stabilizing advanced bronchial neuroendocrine tumors.
San Francisco, California and other locations
Genetic Predisposition Testing Program for Pancreatic Neuroendocrine Neoplasms
open to eligible people ages 18 years and up
This is a prospective observational multi-center pilot study of germline testing for participants receiving care at University of California participating locations with a new or existing diagnosis of Pancreatic Neuroendocrine Neoplasms (PanNEN). This protocol is an extension of existing Genetic Testing Station efforts at University of California, San Francisco (UCSF)
San Francisco, California and other locations
Project: Every Child for Younger Patients With Cancer
open to eligible people ages up to 25 years
This study gathers health information for the Project: Every Child for younger patients with cancer. Gathering health information over time from younger patients with cancer may help doctors find better methods of treatment and on-going care.
Oakland, California and other locations
BXCL701 and Pembrolizumab in Patients With mCRPC Either Small Cell Neuroendocrine Prostate Cancer or Adenocarcinoma Phenotype.
Sorry, in progress, not accepting new patients
An open-label, multicenter, Phase 1b/2 study to identify the recommended Phase 2 dose and assess the efficacy and safety of BXCL701 administered orally, as monotherapy and in combination with PEMBRO, in patients with mCRPC. Patients enrolled in the Phase 2a portion of the study will have either Small Cell Neuroendocrine Prostate Cancer(SCNC)(Cohort A) or adenocarcinoma phenotype (Cohort B), while the Phase 2b randomized portion of the study will enroll only the histologic subtype(s) showing preliminary evidence in Phase 2a. The study will also assess other efficacy parameters, such as rPFS, PSA PFS, OS, and DOR, as well as the safety of the combined treatment. The study will consist of three components.
San Francisco, California and other locations
Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions)
Sorry, in progress, not accepting new patients
This is an open-label, multicenter, global Phase 2 basket study of entrectinib (RXDX-101) for the treatment of patients with solid tumors that harbor an NTRK1/2/3, ROS1, or ALK gene fusion. Patients will be assigned to different baskets according to tumor type and gene fusion.
San Francisco, California and other locations
Pazopanib Hydrochloride in Treating Patients With Progressive Carcinoid Tumors
Sorry, in progress, not accepting new patients
This randomized phase II trial studies how well pazopanib hydrochloride works in treating patients with carcinoid tumors that are growing, spreading, or getting worse. Pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
San Francisco, California and other locations
Pembrolizumab With Liver-Directed or Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors and Liver Metastases
Sorry, in progress, not accepting new patients
This pilot phase II trial studies how effective pembrolizumab and liver-directed therapy or peptide receptor radionuclide therapy are at treating patients with well-differentiated neuroendocrine tumors and symptomatic and/or progressive tumors that have spread to the liver (liver metastases). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Liver-directed therapies such as radiofrequency ablation, transarterial embolization, yttrium-90 microsphere radioembolization, and cryoablation may help activate the immune system in order to shrink tumors that are not being directly targeted. Peptide receptor radionuclide therapy is a form of targeted treatment that is performed by the use of a small molecule, which carries a radioactive component attached to a peptide. Once injected into the body, this small molecule binds to some specific sites on tumor cells called receptors and emit medium energy radiation that can destroy cells. Because this radionuclide is attached to the peptide, which binds receptors on tumor lesions, the radiation can preferably be targeted to the tumor cells in order to destroy them. Giving pembrolizumab in combination with liver-directed therapy or peptide receptor radionuclide therapy may work better than pembrolizumab alone.
San Francisco, California
Embolization Trial for NeuroEndocrine Tumor Metastases To The Liver
Sorry, in progress, not accepting new patients
The primary aim of this trial is to estimate the duration of hepatic progression-free survival (HPFS) in participants treated with bland embolization (BE), transcatheter arterial Lipiodol chemoembolization (TACE), and embolization by drug-eluting beads (DEB). The primary hypothesis is that chemoembolization will be nearly twice as durable as bland embolization; thatis, the hazard ratio for HPFS will be 1.76 or better.
San Francisco, California and other locations
Temozolomide With or Without Capecitabine in Treating Patients With Advanced Pancreatic Neuroendocrine Tumors
Sorry, in progress, not accepting new patients
This randomized phase II trial studies how well giving temozolomide with or without capecitabine works in treating patients with advanced pancreatic neuroendocrine tumors. Drugs used in chemotherapy, such as temozolomide and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether temozolomide is more effective with or without capecitabine in treating patients with advanced pancreatic neuroendocrine tumors.
San Francisco, California and other locations
Testing Cabozantinib in Patients With Advanced Pancreatic Neuroendocrine and Carcinoid Tumors
Sorry, in progress, not accepting new patients
This phase III trial studies cabozantinib to see how well it works compared with placebo in treating patients with neuroendocrine or carcinoid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Cabozantinib is a chemotherapy drug known as a tyrosine kinase inhibitor, and it targets specific tyrosine kinase receptors, that when blocked, may slow tumor growth.
San Francisco, California and other locations
EAP 177Lu-DOTA0-Tyr3-Octreotate for Inoperable, SSR+, NETs, Progressive Under SSA Tx
Sorry, not accepting new patients
Advanced Accelerator Applications is currently pursuing marketing approval for 177Lu-DOTA0-Tyr3-Octreotate (Lutathera). This expanded access therapeutic protocol aims to allow patients suffering from inoperable, somatostatin receptor positive, neuroendocrine tumors, progressive under somatostatin analogue therapy to access the investigational product, 177Lu-DOTA0-Tyr3-Octreotate (Lutathera), prior to its commercial availability.
San Francisco, California and other locations
Our lead scientists for Neuroendocrine Tumor research studies include Collin Blakely Arun A. Rangaswami Emily Bergsland, MD Jennifer G. Michlitsch Nicholas Fidelman Claire Mulvey.
Last updated: