Skip to main content

Stroke clinical trials at UCSF

15 in progress, 9 open to eligible people

Showing trials for
  • Anticoagulation in ICH Survivors for Stroke Prevention and Recovery

    open to eligible people ages 18 years and up

    Primary Aim: To determine if apixaban is superior to aspirin for prevention of the composite outcome of any stroke (hemorrhagic or ischemic) or death from any cause in patients with recent ICH and atrial fibrillation (AF). Secondary Aim: To determine if apixaban, compared with aspirin, results in better functional outcomes as measured by the modified Rankin Scale.

    San Francisco, California and other locations

  • ECoG BMI for Motor and Speech Control

    open to eligible people ages 21 years and up

    Test the feasibility of using electrocorticography (ECoG) signals to control complex devices for motor and speech control in adults severely affected by neurological disorders.

    San Francisco, California

  • GORE® CARDIOFORM Septal Occluder and Antiplatelet Medical Management for Reduction of Recurrent Stroke in Patients With Patent Foramen Ovale (PFO): the REDUCE Post Approval Study

    open to eligible people ages 18-70

    This study will assess the safety and effectiveness of GORE® CARDIOFORM Septal Occluder in a post approval setting and evaluate the quality of operator education and training and transferability of trial experience to a post-market setting.

    San Francisco, California and other locations

  • Sleep for Stroke Management and Recovery Trial

    open to eligible people ages 18 years and up

    The purpose of this study is to determine whether treatment of obstructive sleep apnea (OSA) with positive airway pressure starting shortly after acute ischemic stroke or high risk TIA (1) reduces recurrent stroke, acute coronary syndrome, and all-cause mortality 6 months after the event, and (2) improves stroke outcomes at 3 months in patients who experienced an ischemic stroke.

    San Francisco, California and other locations

  • Neonatal Seizure Registry - Developmental Functional EValuation

    open to eligible people ages 2-8

    The NSR-DEV study is a longitudinal cohort study of around 280 Neonatal Seizure Registry participants that aims to evaluate childhood outcomes after acute symptomatic neonatal seizures, as well as examine risk factors for developmental disabilities and whether these are modified by parent well-being.

    San Francisco, California and other locations

  • Neonatal Seizure Registry, GEnetics of Post-Neonatal Epilepsy

    open to all eligible people

    The NSR-GENE study is a longitudinal cohort study of approximately 300 parent-child trios from the Neonatal Seizure Registry and participating site outpatient clinics that aims to evaluate whether and how genes alter the risk of post-neonatal epilepsy among children with acute provoked neonatal seizures. The researchers aim to develop prediction rules to stratify neonates into low, medium, and high risk for post-neonatal epilepsy based on clinical, electroencephalogram (EEG), magnetic resonance imaging (MRI), and genetic risk factors.

    San Francisco, California and other locations

  • NOninVasive Intracranial prEssure From Transcranial doppLer Ultrasound Development of a Comprehensive Database of Multimodality Monitoring Signals for Brain-Injured Patients

    open to eligible people ages 18 years and up

    This is an observational study in neurocritical care units at University of California San Francisco Medical Center (UCSFMC), Zuckerberg San Francisco General Hospital (ZSFGH), and Duke University Medical Center. In this study, the investigators will primarily use the monitor mode of the Transcranial Doppler (TCD, non-invasive FDA approved device) to record cerebral blood flow velocity (CBFV) signals from the Middle Cerebral Artery and Internal Carotid Artery. TCD data and intracranial pressure (ICP) data will be collected in the following four scenarios. Each recording is up to 60 minutes in length. Multimodality high-resolution physiological signals will be collected from brain injured patients: traumatic brain injury, subarachnoid and intracerebral hemorrhage, liver failure, and ischemic stroke. This is not a hypothesis-driven study but rather a signal database development project with a goal to collect multimodality brain monitoring data to support development and validation of algorithms that will be useful for future brain monitoring devices. In particular, the collected data will be used to support: Development and validation of noninvasive intracranial pressure (nICP) algorithms. Development and validation of continuous monitoring of neurovascular coupling state for brain injury patients Development and validation of noninvasive approaches of detecting elevated ICP state. Development and validation of approaches to determine most likely causes of ICP elevation. Development and validation of approaches to detect acute cerebral hemodynamic response to various neurovascular procedures.

    San Francisco, California and other locations

  • Stroke Recovery Initiative - Registry for Stroke Research Studies

    open to eligible people ages 18 years and up

    The Stroke Recovery Initiative is a nation-wide participant recruitment registry that connects people who have had a stroke with researchers who are working to develop new approaches to improve recovery after stroke.

    San Francisco, California

  • Validation of Early Prognostic Data for Recovery Outcome After Stroke for Future, Higher Yield Trials

    open to eligible people ages 18 years and up

    VERIFY will validate biomarkers of upper extremity (UE) motor outcome in the acute ischemic stroke window for immediate use in clinical trials, and explore these biomarkers in acute intracerebral hemorrhage. VERIFY will create the first multicenter, large-scale, prospective dataset of clinical, transmagnetic stimulation (TMS), and MRI measures in the acute stroke time window.

    San Francisco, California and other locations

  • AMPLATZER PFO Occluder Post Approval Study

    Sorry, not currently recruiting here

    The purpose of this single arm, multi-center study is to confirm the safety and effectiveness of the AMPLATZER™ PFO Occluder in the post Approval Setting.

    San Francisco, California and other locations

  • Focal Cerebral Arteriopathy Steroid Trial

    Sorry, accepting new patients by invitation only

    This comparative effectiveness trial (CET) in children with suspected focal cerebral arteriopathy (FCA) presenting with arterial ischemic stroke (AIS) or transient ischemic attack (TIA) will compare the use of early corticosteroid treatment (Arm A) versus delayed/no corticosteroid treatment (Arm B). Delayed corticosteroid treatment is given only for those demonstrating disease progression and is initiated as soon as the progression is detected (at any time after randomization). All participants will also receive standard of care therapy (aspirin and supportive care). Sites will randomize participants 1:1 to Arm A or B. Participants will be enrolled and randomized as soon as possible after their stroke/TIA up until 96 hours following the initial stroke/TIA event.

    San Francisco, California

  • Hand Rehabilitation Study for Stroke Patients

    Sorry, in progress, not accepting new patients

    The purpose of this study is to find out what are the best settings for applying electrical nerve stimulation over the skin for the short-term improvement of hand dysfunction after a stroke. The ultimate goal is to some day design an effective long-term training program to help someone recovery their ability to use their hands and function independently at home and in society. In order to know how to apply electrical nerve stimulation to produce a good long-term effect on hand dysfunction, we first need to know how to make it work best in the short-term, and improve our understanding of for whom it works and how it works.We will use a commercially available transcutaneous electrical nerve stimulation (TENS) unit to gently apply electrical nerve stimulation over the skin of the affected arm. This is a portable, safe and easy to use device designed for patients to operate in their homes.

    San Francisco, California

  • Infliximab Therapy for Dolichoectactic Vertebrobasilar Aneurysms

    Sorry, accepting new patients by invitation only

    Patients harboring dolichoectactic vertebrobasilar (DVB) aneurysms are at risk of suffering SAH, ischemic stroke, and/or brainstem compression and many patients are not offered invasive treatment due to the futility of existing surgical methods. Consequently, there is demand for development of medical therapy for DVB aneurysms

    San Francisco, California

  • Multi-arm Optimization of Stroke Thrombolysis

    Sorry, in progress, not accepting new patients

    The primary efficacy objective of the MOST trial is to determine if argatroban (100µg/kg bolus followed by 3µg/kg per minute for 12 hours) or eptifibatide (135µg/kg bolus followed by 0.75µg/kg/min infusion for two hours) results in improved 90-day modified Rankin scores (mRS) as compared with placebo in acute ischemic stroke (AIS) patients treated with standard of care thrombolysis (0.9mg/kg IV rt-PA or 0.25mg/kg IV tenecteplase or TNK) within three hours of symptom onset. Patients may also receive endovascular thrombectomy (ET) per usual care. Time of onset is defined as the last time the patient was last known to be well.

    San Francisco, California and other locations

  • Human/Machine Interface: What the HeartMate 3 ® Device Tells Us About the Future

    Sorry, not yet accepting patients

    Durable left ventricular assist devices (dLVAD) have been increasingly utilized since the mid to late 1990s, with an uptick of utility starting in 2010 following expanded indications for therapy to not only include a bridge to transplantation strategy, but also for those individuals who suffer from advanced heart failure (HF) and do not qualify for cardiac transplantation. Despite the decreasing size of the newest generation devices leading to a lessened occurrence of adverse events, bleeding and infection still remain a concern for clinicians, as well as a general lack of predictability towards adverse events in individuals with a dLVAD in place. There is a lack of description in the literature currently, regarding the interface between what the pump data provides and what is seen in clinical practice. There also is little known about the effects of what is provided in the pump data, in correlation to quality-of-life following dLVAD implantation. Therefore, the purpose of this study is to prospectively analyze normal and abnormal pump data through pump operations such as suction events, low flow alarms as well as other adventitious alarms, PI events and power cable disconnects greater than 20 seconds, from the HeartMate 3 ® dLVAD in order to clinically correlate this data to quality of life, frailty and other various medical conditions and adverse events as defined by the Interagency Registry for Mechanically Assisted Circulatory Support (Intermacs). This will be achieved through two aims: 1) Evaluate the effectiveness of dLVAD pump operations data on clinical practice application (quality of life, frailty and various medical conditions, and adverse events such as GIB, RHF, infection, hypertension, arrhythmias and stroke); and 2) Evaluate correlations and relationships of longitudinal normal and abnormal dLVAD pump operations data, to demographic and clinical variables. This study is the first study to evaluate HeartMate 3 ® dLVAD pump operations data over time for effectiveness in the clinical practice.

Our lead scientists for Stroke research studies include .

Last updated: