Astrocytoma clinical trials at UCSF
45 in progress, 19 open to eligible people
Astrocytoma is a brain tumor that forms in star-shaped cells. UCSF is exploring the safety of a new device for recurrent glioblastoma and a combination of drugs called Dabrafenib and Trametinib after radiation therapy. They are also studying a ketogenic diet for glioblastoma patients.
Hemp-Derived, High Cannabidiol Product for Anxiety in Glioblastoma Patients
open to eligible people ages 18 years and up
Glioblastoma (GBM) is the most common malignant brain tumor among adults. As the diagnosis is generally considered terminal, patients with GBM often suffer from anxiety and other comorbid conditions, including depression, pain, and sleep disturbance, all of which significantly impact their quality of life. Previous studies have demonstrated the potential of cannabinoids, particularly cannabidiol (CBD), to improve the aforementioned symptoms without conferring significant risks or side effects. Further, recent in-vitro and in-vivo work suggests potential cytotoxic and anti-tumor effects of CBD and other cannabinoids. This study includes a double-blind, placebo-controlled, 8-week randomized clinical trial assessing the impact of a custom formulated, full-spectrum, hemp-derived ultra-high CBD product on measures of anxiety, pain, and quality of life in newly-diagnosed GBM patients undergoing standard of care (SOC) treatment; the impact of this product vs. placebo on tumor progression will also be assessed. The proposed clinical trial will provide important information that does not currently exist regarding the potential efficacy of a novel full-spectrum, ultra-high CBD product to address clinical symptoms in patients with GBM.
San Francisco, California
Feasibility Study to Evaluate the Safety of the TheraSphere Glioblastoma (GBM) Device in Patients With Recurrent GBM
open to eligible people ages 18 years and up
The FRONTIER Study is a prospective, interventional, single-arm, multi-center, study to assess the safety and technical feasibility of TheraSphere GBM in patients with recurrent GBM.
San Francisco, California and other locations
Ketogenic Diet vs Standard Anti-cancer Diet Guidance for Patients With Glioblastoma in Combination With Standard-of-care Treatment
open to eligible people ages 18 years and up
This is a Phase 2, randomized two-armed, multi-site study of 170 patients with newly diagnosed glioblastoma multiforme. Patients will be randomized 1:1 to receive Keto Diet, or Standard Anti-Cancer Diet. All patients will receive standard of care treatment for their glioblastoma. The Keto Diet intervention will be for an 18-week period and conducted by trained research dietitians. Daily ketone and glucose levels will be recorded to monitor Keto Diet adherence. This two-armed randomized multi-site study aims to provide evidence to support the hypothesis that a Keto Diet vs. Standard Anti-Cancer Diet improves overall survival in newly diagnosed glioblastoma multiforme patients who receive standard of care treatment.
San Francisco, California and other locations
Drug Selinexor With Radiation Therapy in Patients With Newly-Diagnosed Diffuse Intrinsic Pontine (DIPG) Glioma and High-Grade Glioma (HGG)
open to eligible people ages 12 months to 21 years
This phase I/II trial tests the safety, side effects, and best dose of selinexor given in combination with standard radiation therapy in treating children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG) or high-grade glioma (HGG) with a genetic change called H3 K27M mutation. It also tests whether combination of selinexor and standard radiation therapy works to shrink tumors in this patient population. Glioma is a type of cancer that occurs in the brain or spine. Glioma is considered high risk (or high-grade) when it is growing and spreading quickly. The term, risk, refers to the chance of the cancer coming back after treatment. DIPG is a subtype of HGG that grows in the pons (a part of the brainstem that controls functions like breathing, swallowing, speaking, and eye movements). This trial has two parts. The only difference in treatment between the two parts is that some subjects treated in Part 1 may receive a different dose of selinexor than the subjects treated in Part 2. In Part 1 (also called the Dose-Finding Phase), investigators want to determine the dose of selinexor that can be given without causing side effects that are too severe. This dose is called the maximum tolerated dose (MTD). In Part 2 (also called the Efficacy Phase), investigators want to find out how effective the MTD of selinexor is against HGG or DIPG. Selinexor blocks a protein called CRM1, which may help keep cancer cells from growing and may kill them. It is a type of small molecule inhibitor called selective inhibitors of nuclear export (SINE). Radiation therapy uses high energy to kill tumor cells and shrink tumors. The combination of selinexor and radiation therapy may be effective in treating patients with newly-diagnosed DIPG and H3 K27M-Mutant HGG.
Oakland, California and other locations
Drugs Selumetinib vs. Carboplatin and Vincristine in Patients With Low-Grade Glioma
open to eligible people ages 2-21
This phase III trial compares the effect of selumetinib versus the standard of care treatment with carboplatin and vincristine (CV) in treating patients with newly diagnosed or previously untreated low-grade glioma (LGG) that does not have a genetic abnormality called BRAFV600E mutation and is not associated with systemic neurofibromatosis type 1. Selumetinib works by blocking some of the enzymes needed for cell growth and may kill tumor cells. Carboplatin and vincristine are chemotherapy drugs that work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. The overall goal of this study is to see if selumetinib works just as well as the standard treatment of CV for patients with LGG. Another goal of this study is to compare the effects of selumetinib versus CV in subjects with LGG to find out which is better. Additionally, this trial will also examine if treatment with selumetinib improves the quality of life for subjects who take it.
San Francisco, California and other locations
AB154 Combined With AB122 for Recurrent Glioblastoma
open to eligible people ages 18 years and up
This is a phase 0/I exploratory study. Patients at first or second recurrence of glioblastoma will be enrolled. The study will be divided into two cohorts: Cohort A (safety cohort) and Cohort B (surgical patient cohort). Cohort A: Eligible patients will be sequentially enrolled to receive intravenous AB154 combined with AB122 (N=6). AB154 will be given at a dose of 10 mg/kg and AB122 will be given at a dose of 240 mg (flat). Cohort B: Expansion surgical cohort. The purpose of cohort B is to provide an additional safety evaluation of AB154 + AB122 as well as tissue and blood for exploratory ancillary studies investigating the effects of AB154 + AB122 in the tumor and tumor microenvironment. A total of 40 patients will be enrolled in this cohort.
San Francisco, California and other locations
Anti-EGFRvIII synNotch Receptor Induced Anti-EphA2/IL-13Ralpha2 CAR (E-SYNC) T Cells
open to eligible people ages 18 years and up
This phase I trial tests the safety, side effects, and best dose of E-SYNC chimeric antigen receptor (CAR) T cells after lymphodepleting chemotherapy in treating patients with EGFRvIII positive (+) glioblastoma. Chimeric antigen receptor (CAR) T-cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so the CAR T cells will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor. Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Lymphodepleting chemotherapy with cyclophosphamide and fludarabine before treatment with CAR T cells may make the CAR T cells more effective.
San Francisco, California
BGB-290 and Temozolomide in Treating Isocitrate Dehydrogenase (IDH)1/2-Mutant Grade I-IV Gliomas
open to eligible people ages 13-25
This phase I trial studies the side effects and best dose of BGB-290 and temozolomide in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma that is newly diagnosed or has come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma.
San Francisco, California and other locations
Blood-Brain Barrier Disruption (BBBD) for Liquid Biopsy in Subjects With GlioBlastoma Brain Tumors
open to eligible people ages 18-80
The purpose of this study is to evaluate the safety and efficacy of targeted blood brain barrier disruption with Exablate Model 4000 Type 2.0/2.1 for liquid biopsy in subjects with suspected Glioblastoma brain tumors
San Francisco, California and other locations
Dabrafenib Combined With Trametinib After Radiation Therapy in Treating Patients With Newly-Diagnosed High-Grade Glioma
open to eligible people ages 3-25
This phase II trial studies how well the combination of dabrafenib and trametinib works after radiation therapy in children and young adults with high grade glioma who have a genetic change called BRAF V600 mutation. Radiation therapy uses high energy rays to kill tumor cells and reduce the size of tumors. Dabrafenib and trametinib may stop the growth of tumor cells by blocking BRAF and MEK, respectively, which are enzymes that tumor cells need for their growth. Giving dabrafenib with trametinib after radiation therapy may work better than treatments used in the past in patients with newly-diagnosed BRAF V600-mutant high-grade glioma.
San Francisco, California and other locations
Immunotherapy Before and After Surgery for Treatment of Recurrent or Progressive High Grade Glioma in Children and Young Adults
open to eligible people ages 6 months to 25 years
This phase I trial studies the side effects of nivolumab before and after surgery in treating children and young adults with high grade glioma that has come back (recurrent) or is increasing in scope or severity (progressive). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
San Francisco, California and other locations
ONC206 for Treatment of Newly Diagnosed, Recurrent Diffuse Midline Gliomas, and Other Recurrent Malignant CNS Tumors
open to eligible people ages 2-21
This phase I trial studies the effects and best dose of ONC206 alone or in combination with radiation therapy in treating patients with diffuse midline gliomas that is newly diagnosed or has come back (recurrent) or other recurrent primary malignant CNS tumors. ONC206 is a recently discovered compound that may stop cancer cells from growing. This drug has been shown in laboratory experiments to kill brain tumor cells by causing a so called "stress response" in tumor cells. This stress response causes cancer cells to die, but without affecting normal cells. ONC206 alone or in combination with radiation therapy may be effective in treating newly diagnosed or recurrent diffuse midline gliomas and other recurrent primary malignant CNS tumors.
San Francisco, California and other locations
RMC-5552 Monotherapy in Adult Subjects With Recurrent Glioblastoma
open to eligible people ages 18 years and up
This phase I/Ib trial tests the side effects, best dose, tolerability, and effectiveness of RMC-5552 in treating patients with glioblastoma that has come back (recurrent). RMC-5552 is a type of medicine called an mechanistic target of rapamycin (mTOR) inhibitor. These types of drugs prevent the formation of a specific group of proteins called mTOR. This protein controls cancer cell growth, and the study doctors believe stopping mTOR from forming may help to kill tumor cells.
San Francisco, California
Vorasidenib and Pembrolizumab Combination in Recurrent or Progressive Enhancing IDH-1 Mutant Glioma
open to eligible people ages 18 years and up
Vorasidenib in combination with pembrolizumab in participants with recurrent or progressive enhancing isocitrate dehydrogenase-1 (IDH-1) mutant Glioma.
San Francisco, California and other locations
PALSUR-study: Palliative Care Versus Surgery in High-grade Glioma Patients (ENCRAM 2203)
open to eligible people ages 18-90
There is no consensus on the optimal treatment of patients with high-grade glioma, especially when patients have limited functioning performance at presentation (KPS ≤70). Therefore, there are varied practice patterns around pursuing biopsy, resection, or palliation (best supportive care). This study aims to characterize the impact of palliative care versus biopsy versus resection on survival and quality of life in these patients. Also, it will aim to determine if there is a subset of patients that benefit the most from resection or biopsy, for which outcome, and how they could be identified preoperatively. This study is an international, multicenter, prospective, 3-arm cohort study of observational nature. Consecutive HGG patients will be treated with palliative care, biopsy, or resection at a 1:3:3 ratio. Primary endpoints are: 1) overall survival, and 2) quality of life at 6 weeks, 3 months and 6 months after initial presentation based on the EQ-5D, EORTC QLQ C30 and EORTC BN 20 questionnaires. Total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year.
San Francisco, California and other locations
RECMAP-study: Resection With or Without Intraoperative Mapping for Recurrent Glioblastoma
open to eligible people ages up to 90 years
Resection of glioblastoma in or near functional brain tissue is challenging because of the proximity of important structures to the tumor site. To pursue maximal resection in a safe manner, mapping methods have been developed to test for motor and language function during the operation. Previous evidence suggests that these techniques are beneficial for maximum safe resection in newly diagnosed grade 2-4 astrocytoma, grade 2-3 oligodendroglioma, and recently, glioblastoma. However, their effects in recurrent glioblastoma are still poorly understood. The aim of this study, therefore, is to compare the effects of awake mapping and asleep mapping with no mapping in resections for recurrent glioblastoma. This study is an international, multicenter, prospective 3-arm cohort study of observational nature. Recurrent glioblastoma patients will be operated with mapping or no mapping techniques with a 1:1 ratio. Primary endpoints are: 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months, and 6 months after surgery and 2) residual tumor volume of the contrast-enhancing and non-contrast-enhancing part as assessed by a neuroradiologist on postoperative contrast MRI scans. Secondary endpoints are: 1) overall survival (OS), 2) progression-free survival (PFS), 4) health-related quality of life (HRQoL) at 6 weeks, 3 months, and 6 months after surgery, and 4) frequency and severity of Serious Adverse Events (SAEs) in each arm. Estimated total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. The study will be carried out by the centers affiliated with the European and North American Consortium and Registry for Intraoperative Mapping (ENCRAM).
San Francisco, California and other locations
RECSUR-study: Resection Versus Best Oncological Treatment for Recurrent Glioblastoma (ENCRAM 2302)
open to eligible people ages 18-90
Previous evidence has indicated that resection for recurrent glioblastoma might benefit the prognosis of these patients in terms of overall survival. However, the demonstrated safety profile of this approach is contradictory in the literature and the specific benefits in distinct clinical and molecular patient subgroups remains ill-defined. The aim of this study, therefore, is to compare the effects of resection and best oncological treatment for recurrent glioblastoma as a whole and in clinically important subgroups. This study is an international, multicenter, prospective observational cohort study. Recurrent glioblastoma patients will undergo tumor resection or best oncological treatment at a 1:1 ratio as decided by the tumor board. Primary endpoints are: 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks after surgery and 2) overall survival. Secondary endpoints are: 1) progression-free survival (PFS), 2) NIHSS deterioration at 3 months and 6 months after surgery, 3) health-related quality of life (HRQoL) at 6 weeks, 3 months, and 6 months after surgery, and 4) frequency and severity of Serious Adverse Events (SAEs) in each arm. Estimated total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. The study has been approved by the Medical Ethics Committee (METC Zuid-West Holland/Erasmus Medical Center; MEC-2020-0812). The results will be published in peer-reviewed academic journals and disseminated to patient organisations and media.
San Francisco, California and other locations
RESBIOP-study: Resection Versus Biopsy in High-grade Glioma Patients (ENCRAM 2202)
open to eligible people ages 18-90
There are no guidelines or prospective studies defining the optimal surgical treatment for gliomas of older patients (≥70 years) or those with limited functioning performance at presentation (KPS ≤70). Therefore, the decision between resection and biopsy is varied, amongst neurosurgeons internationally and at times even within an instiutition. This study aims to compare the effects of maximal tumor resection versus tissue biopsy on survival, functional, neurological, and quality of life outcomes in these patient subgroups. Furthermore, it evaluates which modality would maximize the potential to undergo adjuvant treatment. This study is an international, multicenter, prospective, 2-arm cohort study of observational nature. Consecutive HGG patients will be treated with resection or biopsy at a 3:1 ratio. Primary endpoints are: 1) overall survival (OS) and 2) proportion of patients that have received adjuvant treatment with chemotherapy and radiotherapy. Secondary endpoints are 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months and 6 months after surgery 2) progression-free survival (PFS); 3) quality of life at 6 weeks, 3 months and 6 months after surgery and 4) frequency and severity of Serious Adverse Events (SAEs). Total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year.
San Francisco, California and other locations
SUPRAMAX Study: Supramaximal Resection Versus Maximal Resection for High-Grade Glioma Patients (ENCRAM 2201)
open to eligible people ages 18-90
A greater extent of resection of the contrast-enhancing (CE) tumor part has been associated with improved outcomes in high-grade glioma patients. Recent results suggest that resection of the non-contrast-enhancing (NCE) part might yield even better survival outcomes (supramaximal resection, SMR). Therefore, this study evaluates the efficacy and safety of SMR with and without mapping techniques in HGG patients in terms of survival, functional, neurological, cognitive, and quality of life outcomes. Furthermore, it evaluates which patients benefit the most from SMR, and how they could be identified preoperatively. This study is an international, multicenter, prospective, 2-arm cohort study of observational nature. Consecutive HGG patients will be operated with supramaximal resection or maximal resection at a 1:3 ratio. Primary endpoints are: 1) overall survival and 2) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months, and 6 months postoperatively. Secondary endpoints are 1) residual CE and NCE tumor volume on postoperative T1-contrast and FLAIR MRI scans 2) progression-free survival; 3) onco-functional outcome, and 4) quality of life at 6 weeks, 3 months, and 6 months postoperatively. The study will be carried out by the centers affiliated with the European and North American Consortium and Registry for Intraoperative Mapping (ENCRAM).
San Francisco, California and other locations
Phase 1-2 Study of ST101 in Patients With Advanced Solid Tumors
Sorry, in progress, not accepting new patients
This is an open-label, two-part, phase 1-2 dose-finding study designed to determine the safety, tolerability, PK, PD, and proof-of-concept efficacy of ST101 administered IV in patients with advanced solid tumors. The study consists of two phases: a phase 1 dose escalation/regimen exploration phase and a phase 2 expansion phase.
San Francisco, California and other locations
Abemaciclib in Recurrent Glioblastoma
Sorry, in progress, not accepting new patients
This research study is studying a targeted therapy as a possible treatment for recurrent glioblastoma (GBM). The following intervention will be used in this study: -Abemaciclib
San Francisco, California and other locations
Berubicin in Adult Subjects With Recurrent Glioblastoma Multiforme
Sorry, in progress, not accepting new patients
This is an open-label, multicenter, randomized, parallel, 2-arm, efficacy and safety study. Patients with GBM after failure of standard first line therapy will be randomized in a 2:1 ratio to receive berubicin or lomustine for the evaluation of OS. Additional endpoints will include response and progression outcomes evaluated by a blinded central reviewer for each patient according to RANO criteria. A pre-planned, non-binding futility analysis will be performed after approximately 30 to 50% of all planned patients have completed the primary endpoint at 6 months. This review will include additional evaluation of safety as well as secondary efficacy endpoints. Enrollment will not be paused during this interim analysis.
San Francisco, California and other locations
Evaluate Multiple Regimens in Newly Diagnosed and Recurrent Glioblastoma
Sorry, not currently recruiting here
Glioblastoma (GBM) adaptive, global, innovative learning environment (GBM AGILE) is an international, seamless Phase II/III response adaptive randomization platform trial designed to evaluate multiple therapies in newly diagnosed (ND) and recurrent GBM.
San Francisco, California and other locations
Adavosertib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed or Recurrent Glioblastoma
Sorry, in progress, not accepting new patients
This phase I trial studies the side effects and best dose of adavosertib when given together with radiation therapy and temozolomide in treating patients with glioblastoma that is newly diagnosed or has come back. Adavosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving adavosertib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed or recurrent glioblastoma compared to radiation therapy and temozolomide alone.
San Francisco, California and other locations
APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors
Sorry, not currently recruiting here
To assess: - efficacy of APL-101 as monotherapy for the treatment of NSCLC harboring MET Exon 14 skipping mutations, NSCLC harboring MET amplification, solid tumors harboring MET amplification, solid tumors harboring MET fusion, primary CNS tumors harboring MET alterations, solid tumors harboring wild-type MET with overexpression of HGF and MET - efficacy of APL-101 as an add-on therapy to EGFR inhibitor for the treatment of NSCLC harboring EGFR activating mutations and developed acquired resistance with MET amplification and disease progression after documented CR or PR with 1st line EGFR inhibitors (EGFR-I)
San Francisco, California and other locations
Clinical Benefit of Using Molecular Profiling to Determine an Individualized Treatment Plan for Patients With High Grade Glioma
Sorry, in progress, not accepting new patients
This is a 2 strata pilot trial within the Pacific Pediatric Neuro-Oncology Consortium (PNOC). The study will use a new treatment approach based on each patient's tumor gene expression, whole-exome sequencing (WES), targeted panel profile (UCSF 500 gene panel), and RNA-Seq. The current study will test the efficacy of such an approach in children with High-grade gliomas HGG.
San Francisco, California and other locations
DB107-RRV, DB107-FC, and Radiation Therapy With or Without Temozolomide (TMZ) for High Grade Glioma
Sorry, not yet accepting patients
This is a multicenter, open-label study of DB107-RRV (formerly Toca 511) and DB107-FC (formerly Toca FC) when administered following surgical resection in newly diagnosed High Grade Glioma (HGG) patients. The study is designed to evaluate whether treatment with DB107-RRV in combination with DB107-FC when added to standard of care provides clinical benefit to newly diagnosed HGG when compared to historical performance previously determined in well controlled clinical trials published in the peer reviewed literature. This study is going to be conducted in newly diagnosed HGG patients receiving with maximum surgical resection treatment followed by radiation and temozolomide treatment using the established Stupp Protocol for O6-methylguanine-DNA methyl-transferase (MGMT) methylated patients or radiation therapy for MGMT unmethylated patients.
San Francisco, California
Individualized Therapy for Recurrent Glioblastoma
Sorry, in progress, not accepting new patients
The current study will test the ability and likelihood of successfully implementing individualized combination treatment recommendations for adult patients with surgically-resectable recurrent glioblastoma in a timely fashion. Collected tumor tissue and blood will be examined using a new diagnostic testing called University of California, San Francisco (UCSF) 500 Cancer Gene Panel which is done at the UCSF Clinical Cancer Genomics Laboratory. The UCSF 500 Cancer Gene Panel will help identify genetic changes in the DNA of a patient's cancer, which helps oncologists improve treatment by identifying targeted therapies.
San Francisco, California
Fimepinostat in Treating Brain Tumors in Children and Young Adults
Sorry, in progress, not accepting new patients
This trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
San Francisco, California and other locations
Hyperpolarized Carbon-13 (13C) Pyruvate Imaging in Patients With Glioblastoma
Sorry, in progress, not accepting new patients
The purpose of this study is to evaluate whether new metabolic imaging will be useful to physicians and patients with glioblastoma for making treatment decisions and seeing how well various types of treatment work. The goal is to improve the way patient care is managed in the future. If you chose to be in this study, you will be receiving novel magnetic resonance (MR) metabolic imaging with standard MR imaging. The research component includes an injection of an investigational agent, called hyperpolarized 13C pyruvate, to obtain dynamic metabolic imaging.
San Francisco, California
INO-5401 and INO-9012 Delivered by Electroporation (EP) in Combination With Cemiplimab (REGN2810) in Newly-Diagnosed Glioblastoma (GBM)
Sorry, in progress, not accepting new patients
Phase 1/2 trial to evaluate safety, immunogenicity and preliminary efficacy of INO-5401 and INO-9012 in combination with cemiplimab (REGN2810), with radiation and chemotherapy, in subjects with newly-diagnosed glioblastoma (GBM).
San Francisco, California and other locations
Neo-adjuvant Evaluation of Glioma Lysate Vaccines in WHO Grade II Glioma
Sorry, in progress, not accepting new patients
This is a pilot neoadjuvant vaccine study in adults with WHO grade II glioma, for which surgical resection of the tumor is clinically indicated. Co-primary objectives are to determine: 1) the safety and feasibility of the neoadjuvant approach; and 2) whether the regimen increases the level of type-1 chemokine CXCL10 and vaccine-specific (i.e., reactive to GBM6-AD) CD8+ T-cells in tumor-infiltrating leukocytes (TILs) in the surgically resected glioma.
San Francisco, California
Pivotal, Randomized, Open-label Study of Optune® (Tumor Treating Fields) Concomitant With RT & TMZ for the Treatment of Newly Diagnosed GBM
Sorry, in progress, not accepting new patients
To test the effectiveness and safety of Optune® given concomitantly with radiation therapy (RT) and temozolomide (TMZ) in newly diagnosed GBM patients, compared to radiation therapy and temozolomide alone. In both arms, Optune® and maintenance temozolomide are continued following radiation therapy.
San Francisco, California and other locations
Selinexor in Treating Younger Patients With Recurrent or Refractory Solid Tumors or High-Grade Gliomas
Sorry, in progress, not accepting new patients
This phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
San Francisco, California and other locations
Selumetinib in Treating Young Patients With Recurrent or Refractory Low Grade Glioma
Sorry, in progress, not accepting new patients
This phase I/II trial studies the side effects and the best dose of selumetinib and how well it works in treating or re-treating young patients with low grade glioma that has come back (recurrent) or does not respond to treatment (refractory). Selumetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
San Francisco, California and other locations
DSP-0390 in Patients with Recurrent High-Grade Glioma
Sorry, in progress, not accepting new patients
This is a study of DSP-0390 in patients with recurrent high grade glioma.
San Francisco, California and other locations
Pemigatinib in Participants With Previously Treated Glioblastoma or Other Primary Central Nervous System Tumors Harboring Activating FGFR1-3 Alterations
Sorry, in progress, not accepting new patients
This is an open-label, monotherapy study of pemigatinib in participants with recurrent glioblastoma (GBM) or other recurrent gliomas, circumscribed astrocytic gliomas, and glioneuronal and neuronal tumors with an activating FGFR1-3 mutation or fusion/rearrangement. This study consists of 2 cohorts, Cohorts A, and B, and will enroll approximately 82 participants into each cohort. Participants will receive pemigatinib 13.5 mg QD on a 2-week on-therapy and 1-week off-therapy schedule as long as they are receiving benefit and have not met any criteria for study withdrawal.
San Francisco, California and other locations
SurVaxM Plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma (SURVIVE)
Sorry, in progress, not accepting new patients
The main purpose of this study is to determine whether adding SurVaxM to standard-of-care temozolomide chemotherapy is better than temozolomide treatment alone for patients with newly diagnosed glioblastoma. This study is designed to compare the length of survival in patients with newly diagnosed glioblastoma who receive temozolomide plus SurVaxM to that of patients treated with standard-of-care temozolomide plus placebo. This study aims to discover what effects, both good and bad, this combination of drugs may have on you and to see if the study drug (SurVaxM) can create an immune response in your blood that is directed against your cancer cells. This study also aims to determine whether treatment with SurVaxM plus temozolomide improves the survival of glioblastoma patients like yourself compared to treatment with temozolomide alone.
San Francisco, California and other locations
Temozolomide With or Without Veliparib in Treating Patients With Newly Diagnosed Glioblastoma Multiforme
Sorry, in progress, not accepting new patients
This randomized phase II/III trial studies how well temozolomide and veliparib work compared to temozolomide alone in treating patients with newly diagnosed glioblastoma multiforme. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether temozolomide is more effective with or without veliparib in treating glioblastoma multiforme.
San Francisco, California and other locations
Newly Diagnosed High Grade Glioma Treated With Concurrent Radiation Therapy, Temozolomide and BMX-001
Sorry, in progress, not accepting new patients
This is a Phase 2 study of newly diagnosed patients with high grade glioma (HGG) undergoing standard radiation therapy and temozolomide treatment. BMX-001 added to radiation therapy and temozolomide has the potential not only to benefit the survival of high grade glioma patients but also to protect against deterioration of cognition and impairment of quality of life. BMX-001 will be given subcutaneously first with a loading dose zero to four days prior to the start of chemoradiation and followed by twice a week doses at one-half of the loading dose for the duration of radiation therapy plus two weeks. Both safety and efficacy of BMX-001 will be evaluated. Impact on cognition will also be assessed. Eighty patients will be randomized to the treatment arm that will receive BMX-001 while undergoing chemoradiation and 80 patients randomized to receive chemoradiation alone. The sponsor hypothesizes that BMX-001 when added to standard radiation therapy and temozolomide will be safe at pharmacologically relevant doses in patients with newly diagnosed high grade glioma. The sponsor also hypothesizes that the addition of BMX-001 will positively impact the overall survival and improve objective measures of cognition in newly diagnosed high grade glioma patients.
San Francisco, California and other locations
Niraparib in Participants With Newly-diagnosed Glioblastoma and Recurrent Glioma
Sorry, not currently recruiting here
This is an open-label, multi-center Phase 0 study with an expansion phase that will enroll up to 24 participants with newly-diagnosed glioblastoma and up to 18 recurrent glioma participants with IDH mutation and ATRX loss. The trial will be composed of a Phase 0 component (subdivided into Arm A and B) and a therapeutic expansion phase. Patients with tumors demonstrating a positive PK Response (in Arm A) or a positive PD Response (in Arm B) of the Phase 0 component of the study will graduate to a therapeutic expansion phase that combines therapeutic dosing of niraparib plus standard-of-care fractionated radiotherapy (in Arm A) or niraparib monotherapy (in Arm B) until progression of disease.
San Francisco, California and other locations
Veliparib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed Malignant Glioma Without H3 K27M or BRAFV600 Mutations
Sorry, in progress, not accepting new patients
This phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations compared to radiation therapy and temozolomide alone.
Oakland, California and other locations
Vorinostat and Temozolomide in Treating Patients With Malignant Gliomas
Sorry, in progress, not accepting new patients
This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.
San Francisco, California and other locations
3D Prediction of Patient-Specific Response
Sorry, in progress, not accepting new patients
This is a prospective, non-randomized, observational registry study evaluating a patient-specific ex vivo 3D (EV3D) assay for drug response using a patient's own biopsy or resected tumor tissue for assessing tissue response to therapy in patients with advanced cancers, including ovarian cancer, high-grade gliomas, and high-grade rare tumors.
San Francisco, California and other locations
PROGRAM-study: Awake Mapping Versus Asleep Mapping Versus No Mapping for Glioblastoma Resections
Sorry, not currently recruiting here
The study is designed as an international, multicenter prospective cohort study. Patients with presumed glioblastoma (GBM) in- or near eloquent areas on diagnostic MRI will be selected by neurosurgeons. Patients will be treated following one of three study arms: 1) a craniotomy where the resection boundaries for motor or language functions will be identified by the "awake" mapping technique (awake craniotomy, AC); 2) a craniotomy where the resection boundaries for motor functions will be identified by "asleep" mapping techniques (MEPs, SSEPs, continuous dynamic mapping); 3) a craniotomy where the resection boundaries will not be identified by any mapping technique ("no mapping group"). All patients will receive follow-up according to standard practice.
San Francisco, California and other locations
Our lead scientists for Astrocytoma research studies include Nancy Ann Oberheim Bush, MD, PhD Sabine Mueller Nicholas Butowski, MD Susan Chang Jennifer Clarke, MD, MPH Caroline A. Hastings Rahul Aggarwal Alyssa T. Reddy John de Groot, M.D. Jennie Taylor.
Last updated: