Skip to main content

Glioma clinical trials at UCSF

85 in progress, 32 open to eligible people

Showing trials for
  • 9-ING-41 in Pediatric Patients with Refractory Malignancies.

    open to eligible people ages up to 22 years

    9-ING-41 has anti-cancer clinical activity with no significant toxicity in adult patients. This Phase 1 study will study its efficacy in paediatric patients with advanced malignancies.

    San Francisco, California and other locations

  • Hemp-Derived, High Cannabidiol Product for Anxiety in Glioblastoma Patients

    open to eligible people ages 18 years and up

    Glioblastoma (GBM) is the most common malignant brain tumor among adults. As the diagnosis is generally considered terminal, patients with GBM often suffer from anxiety and other comorbid conditions, including depression, pain, and sleep disturbance, all of which significantly impact their quality of life. Previous studies have demonstrated the potential of cannabinoids, particularly cannabidiol (CBD), to improve the aforementioned symptoms without conferring significant risks or side effects. Further, recent in-vitro and in-vivo work suggests potential cytotoxic and anti-tumor effects of CBD and other cannabinoids. This study includes a double-blind, placebo-controlled, 8-week randomized clinical trial assessing the impact of a custom formulated, full-spectrum, hemp-derived ultra-high CBD product on measures of anxiety, pain, and quality of life in newly-diagnosed GBM patients undergoing standard of care (SOC) treatment; the impact of this product vs. placebo on tumor progression will also be assessed. The proposed clinical trial will provide important information that does not currently exist regarding the potential efficacy of a novel full-spectrum, ultra-high CBD product to address clinical symptoms in patients with GBM.

    San Francisco, California

  • Ketogenic Diet Vs Standard Anti-cancer Diet Guidance for Patients with Glioblastoma in Combination with Standard-of-care Treatment

    open to eligible people ages 18 years and up

    This is a Phase 2, randomized two-armed, multi-site study of 170 patients with newly diagnosed glioblastoma multiforme. Patients will be randomized 1:1 to receive Keto Diet, or Standard Anti-Cancer Diet. All patients will receive standard of care treatment for their glioblastoma. The Keto Diet intervention will be for an 18-week period and conducted by trained research dietitians. Daily ketone and glucose levels will be recorded to monitor Keto Diet adherence. This two-armed randomized multi-site study aims to provide evidence to support the hypothesis that a Keto Diet vs. Standard Anti-Cancer Diet improves overall survival in newly diagnosed glioblastoma multiforme patients who receive standard of care treatment.

    San Francisco, California and other locations

  • Drug Selinexor With Radiation Therapy in Patients With Newly-Diagnosed Diffuse Intrinsic Pontine (DIPG) Glioma and High-Grade Glioma (HGG)

    open to eligible people ages 12 months to 21 years

    This phase I/II trial tests the safety, side effects, and best dose of selinexor given in combination with standard radiation therapy in treating children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG) or high-grade glioma (HGG) with a genetic change called H3 K27M mutation. It also tests whether combination of selinexor and standard radiation therapy works to shrink tumors in this patient population. Glioma is a type of cancer that occurs in the brain or spine. Glioma is considered high risk (or high-grade) when it is growing and spreading quickly. The term, risk, refers to the chance of the cancer coming back after treatment. DIPG is a subtype of HGG that grows in the pons (a part of the brainstem that controls functions like breathing, swallowing, speaking, and eye movements). This trial has two parts. The only difference in treatment between the two parts is that some subjects treated in Part 1 may receive a different dose of selinexor than the subjects treated in Part 2. In Part 1 (also called the Dose-Finding Phase), investigators want to determine the dose of selinexor that can be given without causing side effects that are too severe. This dose is called the maximum tolerated dose (MTD). In Part 2 (also called the Efficacy Phase), investigators want to find out how effective the MTD of selinexor is against HGG or DIPG. Selinexor blocks a protein called CRM1, which may help keep cancer cells from growing and may kill them. It is a type of small molecule inhibitor called selective inhibitors of nuclear export (SINE). Radiation therapy uses high energy to kill tumor cells and shrink tumors. The combination of selinexor and radiation therapy may be effective in treating patients with newly-diagnosed DIPG and H3 K27M-Mutant HGG.

    Oakland, California and other locations

  • Drugs Selumetinib Versus Carboplatin/Vincristine in Patients With Neurofibromatosis and Low-Grade Glioma

    open to eligible people ages 2-21

    This phase III trial studies if selumetinib works just as well as the standard treatment with carboplatin/vincristine (CV) for subjects with NF1-associated low grade glioma (LGG), and to see if selumetinib is better than CV in improving vision in subjects with LGG of the optic pathway (vision nerves). Selumetinib is a drug that works by blocking some enzymes that low-grade glioma tumor cells need for their growth. This results in killing tumor cells. Drugs used as chemotherapy, such as carboplatin and vincristine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether selumetinib works better in treating patients with NF1-associated low-grade glioma compared to standard therapy with carboplatin and vincristine.

    San Francisco, California and other locations

  • Drugs Selumetinib vs. Carboplatin and Vincristine in Patients With Low-Grade Glioma

    open to eligible people ages 2-21

    This phase III trial compares the effect of selumetinib versus the standard of care treatment with carboplatin and vincristine (CV) in treating patients with newly diagnosed or previously untreated low-grade glioma (LGG) that does not have a genetic abnormality called BRAFV600E mutation and is not associated with systemic neurofibromatosis type 1. Selumetinib works by blocking some of the enzymes needed for cell growth and may kill tumor cells. Carboplatin and vincristine are chemotherapy drugs that work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. The overall goal of this study is to see if selumetinib works just as well as the standard treatment of CV for patients with LGG. Another goal of this study is to compare the effects of selumetinib versus CV in subjects with LGG to find out which is better. Additionally, this trial will also examine if treatment with selumetinib improves the quality of life for subjects who take it.

    San Francisco, California and other locations

  • DAY101 in Pediatric and Young Adult Patients With Relapsed or Progressive Low-Grade Glioma and Advance Solid Tumors

    open to eligible people ages 6 months to 25 years

    FIREFLY-1 is an ongoing, Phase 2, multi center, open-label study to evaluate the safety and efficacy of oral pan-RAF inhibitor DAY101 in pediatric, adolescent, and young adult patients with recurrent or progressive low-grade glioma or an advanced solid tumor harboring a known RAF alteration.

    San Francisco, California and other locations

  • (PK), and Pharmacodynamics (PD) of Satralizumab in Participants With Anti-N-methyl-D-aspartic Acid Receptor (NMDAR) or Anti-leucine-rich Glioma-inactivated 1 (LGI1) Encephalitis

    open to eligible people ages 12 years and up

    The purpose of this study is to assess the efficacy, safety, PK, and PD of satralizumab in participants with NMDAR and LGI1 encephalitis.

    San Francisco, California and other locations

  • AB154 Combined with AB122 for Recurrent Glioblastoma

    open to eligible people ages 18 years and up

    This is a phase 0/I exploratory study. Patients at first or second recurrence of glioblastoma will be enrolled. The study will be divided into two cohorts: Cohort A (safety cohort) and Cohort B (surgical patient cohort). Cohort A: Eligible patients will be sequentially enrolled to receive intravenous domvanalimab combined with zimberelimab (N=6). Domvanalimab will be given at a dose of 10 mg/kg and zimberelimab will be given at a dose of 240 mg (flat). The dosing was determined in a separate study in solid tumors; this cohort will confirm the safety of the dosing schedule in patients with brain tumors. Cohort B: Expansion surgical cohort. The purpose of cohort B is to provide an additional safety evaluation of domvanalimab + zimberelimab as well as tissue and blood for exploratory ancillary studies investigating the effects of domvanalimab + zimberelimab in the tumor and tumor microenvironment. A total of 46 patients will be enrolled in this cohort.

    San Francisco, California and other locations

  • Anti-EGFRvIII synNotch Receptor Induced Anti-EphA2/IL-13Ralpha2 CAR (E-SYNC) T Cells

    open to eligible people ages 18 years and up

    This phase I trial tests the safety, side effects, and best dose of E-SYNC chimeric antigen receptor (CAR) T cells after lymphodepleting chemotherapy in treating patients with EGFRvIII positive (+) glioblastoma. Chimeric antigen receptor (CAR) T-cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so the CAR T cells will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor. Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Lymphodepleting chemotherapy with cyclophosphamide and fludarabine before treatment with CAR T cells may make the CAR T cells more effective.

    San Francisco, California

  • BGB-290 and Temozolomide in Treating Isocitrate Dehydrogenase (IDH)1/2-Mutant Grade I-IV Gliomas

    open to eligible people ages 13-25

    This phase I trial studies the side effects and best dose of BGB-290 and temozolomide in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma that is newly diagnosed or has come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma.

    San Francisco, California and other locations

  • Blood-Brain Barrier Disruption (BBBD) for Liquid Biopsy in Subjects with GlioBlastoma Brain Tumors

    open to eligible people ages 18-80

    The purpose of this study is to evaluate the safety and efficacy of targeted blood brain barrier disruption with Exablate Model 4000 Type 2.0/2.1 for liquid biopsy in subjects with suspected Glioblastoma brain tumors

    San Francisco, California and other locations

  • CBL0137 for the Treatment of Relapsed or Refractory Solid Tumors, Including CNS Tumors and Lymphoma

    open to eligible people ages 12 months to 30 years

    This phase I/II trial evaluates the best dose, side effects and possible benefit of CBL0137 in treating patients with solid tumors, including central nervous system (CNS) tumors or lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Drugs, such as CBL0137, block signals passed from one molecule to another inside a cell. Blocking these signals can affect many functions of the cell, including cell division and cell death, and may kill cancer cells.

    San Francisco, California and other locations

  • Combination Therapy for the Treatment of Diffuse Midline Gliomas

    open to eligible people ages 2-39

    This phase II trial determines if the combination of ONC201 with different drugs, panobinostat or paxalisib, is effective for treating participants with diffuse midline gliomas (DMGs). Despite years of research, little to no progress has been made to improve outcomes for participants with DMGs, and there are few treatment options. ONC201, panobinostat, and paxalisib are all enzyme inhibitors that may stop the growth of tumor cells by clocking some of the enzymes needed for cell growth. This phase II trial assesses different combinations of these drugs for the treatment of DMGs.

    San Francisco, California and other locations

  • Dabrafenib Combined With Trametinib After Radiation Therapy in Treating Patients With Newly-Diagnosed High-Grade Glioma

    open to eligible people ages 3-25

    This phase II trial studies how well the combination of dabrafenib and trametinib works after radiation therapy in children and young adults with high grade glioma who have a genetic change called BRAF V600 mutation. Radiation therapy uses high energy rays to kill tumor cells and reduce the size of tumors. Dabrafenib and trametinib may stop the growth of tumor cells by blocking BRAF and MEK, respectively, which are enzymes that tumor cells need for their growth. Giving dabrafenib with trametinib after radiation therapy may work better than treatments used in the past in patients with newly-diagnosed BRAF V600-mutant high-grade glioma.

    San Francisco, California and other locations

  • DAY101 Vs. Standard of Care Chemotherapy in Pediatric Patients with Low-Grade Glioma Requiring First-Line Systemic Therapy (LOGGIC/FIREFLY-2)

    open to eligible people ages up to 25 years

    This is a 2-arm, randomized, open-label, multicenter, global, Phase 3 trial to evaluate the efficacy, safety, and tolerability of tovorafenib monotherapy versus standard of care (SoC) chemotherapy in patients with pediatric low-grade glioma (LGG) harboring an activating rapidly accelerated fibrosarcoma (RAF) alteration requiring front-line systemic therapy.

    San Francisco, California and other locations

  • Genetically Modified Cells (KIND T Cells) for the Treatment of HLA-A*0201-Positive Patients With H3.3K27M-Mutated Glioma

    open to eligible people ages 3-25

    This phase I, first-in-human trial tests the safety, side effects, and best dose of genetically modified cells called KIND T cells after lymphodepletion (a short dose of chemotherapy) in treating patients who are HLA-A*0201-positive and have H3.3K27M-mutated diffuse midline glioma. KIND T cells are a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory into KIND T cells so they will recognize certain markers found in tumor cells. Drugs such as cyclophosphamide and fludarabine are chemotherapy drugs used to decrease the number of T cells in the body to make room for KIND T cells. Giving KIND T cells after cyclophosphamide and fludarabine may be more useful against cancer compared to the usual treatment for patients with H3.3K27M-mutated diffuse midline glioma (DMG).

    San Francisco, California

  • Hyperpolarized Carbon-13 Alpha-ketoglutarate Imaging in IDH Mutant Glioma

    open to eligible people ages 18 years and up

    This study will investigate the use of hyperpolarized (HP) carbon-13 (13C) alpha-ketoglutarate (aKG) (HP 13C-aKG) to characterize tumor burden in participants with isocitrate dehydrogenase (IDH) mutant glioma.

    San Francisco, California

  • Hyperpolarized Imaging in Diagnosing Participants With Glioma

    open to eligible people ages 19 years and up

    This pilot trial studies the side effects of hyperpolarized carbon C 13 pyruvate magnetic resonance imaging (MRI) in diagnosing participants with glioma. Diagnostic procedures, such as hyperpolarized carbon C 13 pyruvate MRI, may help find and diagnose glioma.

    San Francisco, California

  • Immunotherapy Before and After Surgery for Treatment of Recurrent or Progressive High Grade Glioma in Children and Young Adults

    open to eligible people ages 6 months to 25 years

    This phase I trial studies the side effects of nivolumab before and after surgery in treating children and young adults with high grade glioma that has come back (recurrent) or is increasing in scope or severity (progressive). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

    San Francisco, California and other locations

  • MCT for the Harvard/UCSF ROBIN Center

    open to all eligible people

    The goal of the Molecular Characterization Trial (MCT) is to obtain biological specimens and data resources from patients enrolled on prospective trials, to ensure that the Harvard/UCSF ROBIN Center accomplishes its key objective of advancing our understanding of the biological mechanisms that underlie how radiation treats tumors but also can cause unwanted side effects. The MCT focuses on collection of research biospecimens before, during, and after radiation. Also critical to the MCT is the deep annotation of these research biospecimens with elements that complement each other to provide a holistic, detailed view of each patient. Annotated elements include those used in the past such as clinical and biological features but extend to factors we have so far neglected but must incorporate in the future such as dosimetry (precise anatomical measurement of radiation dose), artificial intelligence, computational biology, and natural language processing.

    San Francisco, California and other locations

  • ONC201 in H3 K27M-mutant Diffuse Glioma Following Radiotherapy (the ACTION Study)

    open to all eligible people

    This is a randomized, double-blind, placebo-controlled, parallel-group, international, Phase 3 study in patients with newly diagnosed H3 K27M-mutant diffuse glioma to assess whether treatment with ONC201 following frontline radiotherapy will extend overall survival and progression-free survival in this population. Eligible participants will have histologically diagnosed H3 K27M-mutant diffuse glioma and have completed standard frontline radiotherapy.

    San Francisco, California and other locations

  • ONC206 for Treatment of Newly Diagnosed, Recurrent Diffuse Midline Gliomas, and Other Recurrent Malignant CNS Tumors

    open to eligible people ages 2-21

    This phase I trial studies the effects and best dose of ONC206 alone or in combination with radiation therapy in treating patients with diffuse midline gliomas that is newly diagnosed or has come back (recurrent) or other recurrent primary malignant CNS tumors. ONC206 is a recently discovered compound that may stop cancer cells from growing. This drug has been shown in laboratory experiments to kill brain tumor cells by causing a so called "stress response" in tumor cells. This stress response causes cancer cells to die, but without affecting normal cells. ONC206 alone or in combination with radiation therapy may be effective in treating newly diagnosed or recurrent diffuse midline gliomas and other recurrent primary malignant CNS tumors.

    San Francisco, California and other locations

  • RMC-5552 Monotherapy in Adult Subjects with Recurrent Glioblastoma

    open to eligible people ages 18 years and up

    This phase I/Ib trial tests the side effects, best dose, tolerability, and effectiveness of RMC-5552 in treating patients with glioblastoma that has come back (recurrent). RMC-5552 is a type of medicine called an mechanistic target of rapamycin (mTOR) inhibitor. These types of drugs prevent the formation of a specific group of proteins called mTOR. This protein controls cancer cell growth, and the study doctors believe stopping mTOR from forming may help to kill tumor cells.

    San Francisco, California

  • Serial MR Imaging and MR Spectroscopic Imaging for the Characterization of Lower Grade Glioma

    open to eligible people ages 18 years and up

    This trial studies how well serial magnetic resonance (MR) imaging and MR spectroscopic imaging work in characterizing lower grade glioma. Diagnostic procedures, such as MR imaging and MR spectroscopic imaging, may detect serial changes in lower grade glioma. This study may help researchers learn more about practical ways of evaluating and standardizing treatment in patients with brain tumors.

    San Francisco, California

  • Vorasidenib and Pembrolizumab Combination in Recurrent or Progressive IDH-1 Mutant Glioma

    open to eligible people ages 18 years and up

    Vorasidenib in combination with pembrolizumab in participants with recurrent or progressive enhancing isocitrate dehydrogenase-1 (IDH-1) mutant Glioma.

    San Francisco, California and other locations

  • Trametinib and Everolimus for Treatment of Pediatric and Young Adult Patients With Recurrent Gliomas (PNOC021)

    open to eligible people ages 1-25

    This phase I trial studies the side effects and best dose of trametinib and everolimus in treating pediatric and young adult patients with gliomas that have come back (recurrent). Trametinib acts by targeting a protein in cells called MEK and disrupting tumor growth. Everolimus is a drug that may block another pathway in tumor cells that can help tumors grow. Giving trametinib and everolimus may work better to treat low and high grade gliomas compared to trametinib or everolimus alone.

    San Francisco, California and other locations

  • PALSUR-study: Palliative Care Versus Surgery in High-grade Glioma Patients (ENCRAM 2203)

    open to eligible people ages 18-90

    There is no consensus on the optimal treatment of patients with high-grade glioma, especially when patients have limited functioning performance at presentation (KPS ≤70). Therefore, there are varied practice patterns around pursuing biopsy, resection, or palliation (best supportive care). This study aims to characterize the impact of palliative care versus biopsy versus resection on survival and quality of life in these patients. Also, it will aim to determine if there is a subset of patients that benefit the most from resection or biopsy, for which outcome, and how they could be identified preoperatively. This study is an international, multicenter, prospective, 3-arm cohort study of observational nature. Consecutive HGG patients will be treated with palliative care, biopsy, or resection at a 1:3:3 ratio. Primary endpoints are: 1) overall survival, and 2) quality of life at 6 weeks, 3 months and 6 months after initial presentation based on the EQ-5D, EORTC QLQ C30 and EORTC BN 20 questionnaires. Total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year.

    San Francisco, California and other locations

  • RECMAP-study: Resection With or Without Intraoperative Mapping for Recurrent Glioblastoma

    open to eligible people ages up to 90 years

    Resection of glioblastoma in or near functional brain tissue is challenging because of the proximity of important structures to the tumor site. To pursue maximal resection in a safe manner, mapping methods have been developed to test for motor and language function during the operation. Previous evidence suggests that these techniques are beneficial for maximum safe resection in newly diagnosed grade 2-4 astrocytoma, grade 2-3 oligodendroglioma, and recently, glioblastoma. However, their effects in recurrent glioblastoma are still poorly understood. The aim of this study, therefore, is to compare the effects of awake mapping and asleep mapping with no mapping in resections for recurrent glioblastoma. This study is an international, multicenter, prospective 3-arm cohort study of observational nature. Recurrent glioblastoma patients will be operated with mapping or no mapping techniques with a 1:1 ratio. Primary endpoints are: 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months, and 6 months after surgery and 2) residual tumor volume of the contrast-enhancing and non-contrast-enhancing part as assessed by a neuroradiologist on postoperative contrast MRI scans. Secondary endpoints are: 1) overall survival (OS), 2) progression-free survival (PFS), 4) health-related quality of life (HRQoL) at 6 weeks, 3 months, and 6 months after surgery, and 4) frequency and severity of Serious Adverse Events (SAEs) in each arm. Estimated total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. The study will be carried out by the centers affiliated with the European and North American Consortium and Registry for Intraoperative Mapping (ENCRAM).

    San Francisco, California and other locations

  • RECSUR-study: Resection Versus Best Oncological Treatment for Recurrent Glioblastoma (ENCRAM 2302)

    open to eligible people ages 18-90

    Previous evidence has indicated that resection for recurrent glioblastoma might benefit the prognosis of these patients in terms of overall survival. However, the demonstrated safety profile of this approach is contradictory in the literature and the specific benefits in distinct clinical and molecular patient subgroups remains ill-defined. The aim of this study, therefore, is to compare the effects of resection and best oncological treatment for recurrent glioblastoma as a whole and in clinically important subgroups. This study is an international, multicenter, prospective observational cohort study. Recurrent glioblastoma patients will undergo tumor resection or best oncological treatment at a 1:1 ratio as decided by the tumor board. Primary endpoints are: 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks after surgery and 2) overall survival. Secondary endpoints are: 1) progression-free survival (PFS), 2) NIHSS deterioration at 3 months and 6 months after surgery, 3) health-related quality of life (HRQoL) at 6 weeks, 3 months, and 6 months after surgery, and 4) frequency and severity of Serious Adverse Events (SAEs) in each arm. Estimated total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. The study has been approved by the Medical Ethics Committee (METC Zuid-West Holland/Erasmus Medical Center; MEC-2020-0812). The results will be published in peer-reviewed academic journals and disseminated to patient organisations and media.

    San Francisco, California and other locations

  • RESBIOP-study: Resection Versus Biopsy in High-grade Glioma Patients (ENCRAM 2202)

    open to eligible people ages 18-90

    There are no guidelines or prospective studies defining the optimal surgical treatment for gliomas of older patients (≥70 years) or those with limited functioning performance at presentation (KPS ≤70). Therefore, the decision between resection and biopsy is varied, amongst neurosurgeons internationally and at times even within an instiutition. This study aims to compare the effects of maximal tumor resection versus tissue biopsy on survival, functional, neurological, and quality of life outcomes in these patient subgroups. Furthermore, it evaluates which modality would maximize the potential to undergo adjuvant treatment. This study is an international, multicenter, prospective, 2-arm cohort study of observational nature. Consecutive HGG patients will be treated with resection or biopsy at a 3:1 ratio. Primary endpoints are: 1) overall survival (OS) and 2) proportion of patients that have received adjuvant treatment with chemotherapy and radiotherapy. Secondary endpoints are 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months and 6 months after surgery 2) progression-free survival (PFS); 3) quality of life at 6 weeks, 3 months and 6 months after surgery and 4) frequency and severity of Serious Adverse Events (SAEs). Total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year.

    San Francisco, California and other locations

  • SUPRAMAX Study: Supramaximal Resection Versus Maximal Resection for High-Grade Glioma Patients (ENCRAM 2201)

    open to eligible people ages 18-90

    A greater extent of resection of the contrast-enhancing (CE) tumor part has been associated with improved outcomes in high-grade glioma patients. Recent results suggest that resection of the non-contrast-enhancing (NCE) part might yield even better survival outcomes (supramaximal resection, SMR). Therefore, this study evaluates the efficacy and safety of SMR with and without mapping techniques in HGG patients in terms of survival, functional, neurological, cognitive, and quality of life outcomes. Furthermore, it evaluates which patients benefit the most from SMR, and how they could be identified preoperatively. This study is an international, multicenter, prospective, 2-arm cohort study of observational nature. Consecutive HGG patients will be operated with supramaximal resection or maximal resection at a 1:3 ratio. Primary endpoints are: 1) overall survival and 2) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months, and 6 months postoperatively. Secondary endpoints are 1) residual CE and NCE tumor volume on postoperative T1-contrast and FLAIR MRI scans 2) progression-free survival; 3) onco-functional outcome, and 4) quality of life at 6 weeks, 3 months, and 6 months postoperatively. The study will be carried out by the centers affiliated with the European and North American Consortium and Registry for Intraoperative Mapping (ENCRAM).

    San Francisco, California and other locations

  • Sonodynamic Therapy Using SONALA-001 and Exablate 4000 Type 2.0 in Patients with DIPG

    Sorry, currently not accepting new patients, but might later

    The primary objectives of this trial are to evaluate the safety and tolerability of sonodynamic therapy (SDT) using SONALA-001 and Exablate Type 2.0 device and to determine the maximum tolerated dose (MTD) or recommended phase 2 dose (RP2D) of MR-Guided Focused Ultrasound (MRgFUS) energy in combination with SONALA-001 in subjects with diffuse intrinsic pontine glioma Funding Source - FDA OOPD

    San Francisco, California and other locations

  • 9-ING-41 in Patients with Advanced Cancers

    Sorry, in progress, not accepting new patients

    GSK-3β is a potentially important therapeutic target in human malignancies. The Actuate 1801 Phase 1/2 study is designed to evaluate the safety and efficacy of 9-ING-41, a potent GSK-3β inhibitor, as a single agent and in combination with cytotoxic agents, in patients with refractory cancers.

    San Francisco, California and other locations

  • Feasibility Study to Evaluate the Safety of the TheraSphere Glioblastoma (GBM) Device in Patients With Recurrent GBM

    Sorry, in progress, not accepting new patients

    The FRONTIER Study is a prospective, interventional, single-arm, multi-center, study to assess the safety and technical feasibility of TheraSphere GBM in patients with recurrent GBM.

    San Francisco, California and other locations

  • Phase 1-2 Study of ST101 in Patients With Advanced Solid Tumors

    Sorry, in progress, not accepting new patients

    This is an open-label, two-part, phase 1-2 dose-finding study designed to determine the safety, tolerability, PK, PD, and proof-of-concept efficacy of ST101 administered IV in patients with advanced solid tumors. The study consists of two phases: a phase 1 dose escalation/regimen exploration phase and a phase 2 expansion phase.

    San Francisco, California and other locations

  • Pilot Surgical Trial To Evaluate Early Immunologic Pharmacodynamic Parameters For The PD-1 Checkpoint Inhibitor, Pembrolizumab (MK-3475), In Patients With Surgically Accessible Recurrent/Progressive Glioblastoma

    Sorry, in progress, not accepting new patients

    This research study is studying an immunotherapy as a possible treatment for Glioblastoma.

    San Francisco, California and other locations

  • Abemaciclib in Recurrent Glioblastoma

    Sorry, in progress, not accepting new patients

    This research study is studying a targeted therapy as a possible treatment for recurrent glioblastoma (GBM). The following intervention will be used in this study: -Abemaciclib

    San Francisco, California and other locations

  • Berubicin in Adult Subjects With Recurrent Glioblastoma Multiforme

    Sorry, in progress, not accepting new patients

    This is an open-label, multicenter, randomized, parallel, 2-arm, efficacy and safety study. Patients with GBM after failure of standard first line therapy will be randomized in a 2:1 ratio to receive berubicin or lomustine for the evaluation of OS. Additional endpoints will include response and progression outcomes evaluated by a blinded central reviewer for each patient according to RANO criteria. A pre-planned, non-binding futility analysis will be performed after approximately 30 to 50% of all planned patients have completed the primary endpoint at 6 months. This review will include additional evaluation of safety as well as secondary efficacy endpoints. Enrollment will not be paused during this interim analysis.

    San Francisco, California and other locations

  • Evaluate Multiple Regimens in Newly Diagnosed and Recurrent Glioblastoma

    Sorry, not currently recruiting here

    Glioblastoma (GBM) adaptive, global, innovative learning environment (GBM AGILE) is an international, seamless Phase II/III response adaptive randomization platform trial designed to evaluate multiple therapies in newly diagnosed (ND) and recurrent GBM.

    San Francisco, California and other locations

  • APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors

    Sorry, not currently recruiting here

    To assess: - efficacy of APL-101 as monotherapy for the treatment of NSCLC harboring MET Exon 14 skipping mutations, NSCLC harboring MET amplification, solid tumors harboring MET amplification, solid tumors harboring MET fusion, primary CNS tumors harboring MET alterations, solid tumors harboring wild-type MET with overexpression of HGF and MET - efficacy of APL-101 as an add-on therapy to EGFR inhibitor for the treatment of NSCLC harboring EGFR activating mutations and developed acquired resistance with MET amplification and disease progression after documented CR or PR with 1st line EGFR inhibitors (EGFR-I)

    San Francisco, California and other locations

  • Clinical Benefit of Using Molecular Profiling to Determine an Individualized Treatment Plan for Patients With High Grade Glioma

    Sorry, in progress, not accepting new patients

    This is a 2 strata pilot trial within the Pacific Pediatric Neuro-Oncology Consortium (PNOC). The study will use a new treatment approach based on each patient's tumor gene expression, whole-exome sequencing (WES), targeted panel profile (UCSF 500 gene panel), and RNA-Seq. The current study will test the efficacy of such an approach in children with High-grade gliomas HGG.

    San Francisco, California and other locations

  • DAY101 In Gliomas and Other Tumors

    Sorry, in progress, not accepting new patients

    This research study is studying a drug Tovorafenib/DAY101 (formerly TAK-580, MLN2480) as a possible treatment a low-grade glioma that has not responded to other treatments. The name of the study drug involved in this study is: • Tovorafenib/DAY101 (formerly TAK-580, MLN2480)

    San Francisco, California and other locations

  • DB107-RRV, DB107-FC, and Radiation Therapy With or Without Temozolomide (TMZ) for High Grade Glioma

    Sorry, not yet accepting patients

    This is a multicenter, open-label study of DB107-RRV (formerly Toca 511) and DB107-FC (formerly Toca FC) when administered following surgical resection in newly diagnosed High Grade Glioma (HGG) patients. The study is designed to evaluate whether treatment with DB107-RRV in combination with DB107-FC when added to standard of care provides clinical benefit to newly diagnosed HGG when compared to historical performance previously determined in well controlled clinical trials published in the peer reviewed literature. This study is going to be conducted in newly diagnosed HGG patients receiving with maximum surgical resection treatment followed by radiation and temozolomide treatment using the established Stupp Protocol for O6-methylguanine-DNA methyl-transferase (MGMT) methylated patients or radiation therapy for MGMT unmethylated patients.

    San Francisco, California

  • Ensartinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)

    Sorry, in progress, not accepting new patients

    This phase II Pediatric MATCH treatment trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    Oakland, California and other locations

  • Erdafitinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With FGFR Mutations (A Pediatric MATCH Treatment Trial)

    Sorry, in progress, not accepting new patients

    This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with FGFR mutations that have spread to other places in the body and have come back or do not respond to treatment. Erdafitinib may stop the growth of cancer cells with FGFR mutations by blocking some of the enzymes needed for cell growth.

    Oakland, California and other locations

  • Individualized Therapy for Recurrent Glioblastoma

    Sorry, in progress, not accepting new patients

    The current study will test the ability and likelihood of successfully implementing individualized combination treatment recommendations for adult patients with surgically-resectable recurrent glioblastoma in a timely fashion. Collected tumor tissue and blood will be examined using a new diagnostic testing called University of California, San Francisco (UCSF) 500 Cancer Gene Panel which is done at the UCSF Clinical Cancer Genomics Laboratory. The UCSF 500 Cancer Gene Panel will help identify genetic changes in the DNA of a patient's cancer, which helps oncologists improve treatment by identifying targeted therapies.

    San Francisco, California

  • Fimepinostat in Treating Brain Tumors in Children and Young Adults

    Sorry, in progress, not accepting new patients

    This trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    San Francisco, California and other locations

  • Hyperpolarized Carbon-13 (13C) Pyruvate Imaging in Patients With Glioblastoma

    Sorry, in progress, not accepting new patients

    The purpose of this study is to evaluate whether new metabolic imaging will be useful to physicians and patients with glioblastoma for making treatment decisions and seeing how well various types of treatment work. The goal is to improve the way patient care is managed in the future. If you chose to be in this study, you will be receiving novel magnetic resonance (MR) metabolic imaging with standard MR imaging. The research component includes an injection of an investigational agent, called hyperpolarized 13C pyruvate, to obtain dynamic metabolic imaging.

    San Francisco, California

  • INO-5401 and INO-9012 Delivered by Electroporation (EP) in Combination With Cemiplimab (REGN2810) in Newly-Diagnosed Glioblastoma (GBM)

    Sorry, in progress, not accepting new patients

    Phase 1/2 trial to evaluate safety, immunogenicity and preliminary efficacy of INO-5401 and INO-9012 in combination with cemiplimab (REGN2810), with radiation and chemotherapy, in subjects with newly-diagnosed glioblastoma (GBM).

    San Francisco, California and other locations

  • Ivosidenib in Treating Patients With Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With IDH1 Mutations (A Pediatric MATCH Treatment Trial)

    Sorry, in progress, not accepting new patients

    This phase II Pediatric MATCH trial studies how well ivosidenib works in treating patients with solid tumors that have spread to other places in the body (advanced), lymphoma, or histiocytic disorders that have IDH1 genetic alterations (mutations). Ivosidenib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway called the IDH pathway.

    Oakland, California and other locations

  • Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With NTRK Fusions (A Pediatric MATCH Treatment Trial)

    Sorry, in progress, not accepting new patients

    This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    Oakland, California and other locations

  • Maintenance Chemotherapy or Observation Following Induction Chemotherapy and Radiation Therapy in Treating Patients With Newly Diagnosed Ependymoma

    Sorry, in progress, not accepting new patients

    The primary aim of this randomized phase III trial was to study whether the addition of maintenance chemotherapy delivered after surgical resection and focal radiation would be better than surgery and focal radiation alone. The trial also studied if patients who received induction chemotherapy and then either achieved a complete response or went on to have a complete resection would also benefit from maintenance chemotherapy. Children ages 1-21 years with newly diagnosed intracranial ependymoma were included. There were 2 arms that were not randomized. One arm studied patients with Grade II tumors located in the supratentorial compartment that were completely resected. One arm studied patients with residual tumor and those patients all received maintenance chemotherapy after focal radiation. Chemotherapy drugs, such as vincristine sulfate, carboplatin, cyclophosphamide, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Radiation therapy uses high-energy x-rays to kill tumor cells. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Giving chemotherapy in combination with radiation therapy may kill more tumor cells and allow doctors to save the part of the body where the cancer started.

    Oakland, California and other locations

  • ONC201 in Adults With Recurrent H3 K27M-mutant Glioma

    Sorry, in progress, not accepting new patients

    The primary objective of this phase II trial is to determine the efficacy and safety of ONC201, an oral small molecule imipridone DRD2 antagonist, in adult subjects with recurrent high-grade glioma. This study will test the research hypothesis that histone H3 K27M mutation sensitizes to oral administration of ONC201 in gliomas.

    San Francisco, California and other locations

  • ONC201 in Pediatric H3 K27M Gliomas

    Sorry, in progress, not accepting new patients

    This is a multicenter, open-label, seven arm, dose escalation, phase I study of oral ONC201 in pediatric patients with newly diagnosed Diffuse Intrinsic Pontine Glioma (DIPG) and recurrent/refractory H3 K27M gliomas. Arm A will define the RP2D for single agent ONC201 in pediatric patients with glioma who are positive for the H3 K27M mutation (positive testing in CLIA laboratory) and have completed at least one line of prior therapy. This will allow for recurrent patients and also patients who have not yet recurred, but have completed radiation and will inevitably recur based on prior clinical experience and the literature. Arm B will define the RP2D for ONC201 in combination with radiation in pediatric patients with newly diagnosed DIPG. Arm C will determine intratumoral drug concentrations and biomarker expression in pediatric patients with midline gliomas. Arm D will determine H3 K27M DNA levels and drug concentrations in the CSF of pediatric H3 K27M-mutant glioma patients. Arm E will determine the RP2D for single agent ONC201 administered as a liquid formulation in Ora-Sweet to patients with DIPG and/or H3 K27M glioma. Arm F is a dose expansion cohort to confirm the safety and estimate the efficacy in recurrent H3 K27M-mutant glioma population at the RP2D. Arm G will define the RP2D for single agent ONC201 given on two consecutive days of each week in pediatric patients with glioma who are positive for the H3 K27M mutation and have completed at least one line of prior therapy.

    San Francisco, California and other locations

  • Pembrolizumab (MK-3475) in Patients With Recurrent Malignant Glioma With a Hypermutator Phenotype

    Sorry, in progress, not accepting new patients

    The purpose of this study is to test if the study drug called pembrolizumab could control the growth or shrink the cancer but it could also cause side effects. Researchers hope to learn if the study drug will shrink the cancer by half, or prevent it from growing for at least 6 months. Pembrolizumab is an antibody that targets the immune system and activates it to stop cancer growth and/or kill cancer cells.

    San Francisco, California and other locations

  • Anaplastic Glioma Without 1p/19q Loss of Heterozygosity (LOH)

    Sorry, in progress, not accepting new patients

    RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving radiation therapy together with temozolomide may kill more tumor cells. It is not yet known whether giving temozolomide during and/or after radiation therapy is more effective than radiation therapy alone in treating anaplastic glioma. PURPOSE: This randomized phase III trial is studying giving temozolomide during and/or after radiation therapy to see how well it works compared to radiation therapy alone in treating patients with anaplastic glioma.

    San Francisco, California and other locations

  • Pivotal, Randomized, Open-label Study of Optune® (Tumor Treating Fields) Concomitant with RT & TMZ for the Treatment of Newly Diagnosed GBM

    Sorry, in progress, not accepting new patients

    To test the effectiveness and safety of Optune® given concomitantly with radiation therapy (RT) and temozolomide (TMZ) in newly diagnosed GBM patients, compared to radiation therapy and temozolomide alone. In both arms, Optune® and maintenance temozolomide are continued following radiation therapy.

    San Francisco, California and other locations

  • PVSRIPO in Recurrent Malignant Glioma

    Sorry, in progress, not accepting new patients

    This is a phase 2 study of oncolytic polio/rhinovirus recombinant (PVSRIPO) in adult patients with recurrent World Health Organization (WHO) grade IV malignant glioma.

    San Francisco, California and other locations

  • Rehabilitation and Longitudinal Follow-up of Cognition in Adult Lower Grade Gliomas

    Sorry, in progress, not accepting new patients

    Patients with glial brain tumors have increasingly improved outcomes, with median survival of 5-15 years. However, the treatments, including surgery, radiation, and chemotherapy, often lead to impaired attention, working memory, and other cognitive functions. These cognitive deficits frequently have significant impact on patient quality of life. Although currently, there is no established standard of care to treat cognitive deficits in brain tumor patients, standard cognitive rehabilitative treatments have been developed for those with traumatic brain injury and stroke. However, the feasibility and efficacy of these cognitive treatments in individuals with brain tumors remains unclear.

    San Francisco, California

  • Samotolisib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With TSC or PI3K/MTOR Mutations (A Pediatric MATCH Treatment Trial)

    Sorry, in progress, not accepting new patients

    This phase II Pediatric MATCH trial studies how well samotolisib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). Samotolisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    Oakland, California and other locations

  • Selinexor in Treating Younger Patients With Recurrent or Refractory Solid Tumors or High-Grade Gliomas

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

    San Francisco, California and other locations

  • Selpercatinib for the Treatment of Advanced Solid Tumors, Lymphomas, or Histiocytic Disorders With Activating RET Gene Alterations, a Pediatric MATCH Treatment Trial

    Sorry, in progress, not accepting new patients

    This phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.

    Oakland, California and other locations

  • Selumetinib in Treating Young Patients With Recurrent or Refractory Low Grade Glioma

    Sorry, in progress, not accepting new patients

    This phase I/II trial studies the side effects and the best dose of selumetinib and how well it works in treating or re-treating young patients with low grade glioma that has come back (recurrent) or does not respond to treatment (refractory). Selumetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    San Francisco, California and other locations

  • AG-120 and AG-881 in Subjects With Low Grade Glioma

    Sorry, in progress, not accepting new patients

    Study to evaluate the suppression of 2-HG (2-hydroxyglutarate) in IDH-1 mutant gliomas in resected tumor tissue following pre-surgical treatment with AG-120 or AG-881.

    San Francisco, California and other locations

  • DSP-0390 in Patients with Recurrent High-Grade Glioma

    Sorry, in progress, not accepting new patients

    This is a study of DSP-0390 in patients with recurrent high grade glioma.

    San Francisco, California and other locations

  • Palbociclib Combined With Chemotherapy In Pediatric Patients With Recurrent/Refractory Solid Tumors

    Sorry, in progress, not accepting new patients

    A study to learn about safety and find out maximum tolerable dose of palbociclib given in combination with chemotherapy (temozolomide with irinotecan or topotecan with cyclophosphamide) in children, adolescents and young adults with recurrent or refractory solid tumors (phase 1). Neuroblastoma tumor specific cohort to further evaluate antitumor activity of palbociclib in combination with topotecan and cyclophosphamide in children, adolescents, and young adults with recurrent or refractory neuroblastoma. Phase 2 to learn about the efficacy of palbociclib in combination with irinotecan and temozolomide when compared with irinotecan and temozolomide alone in the treatment of children, adolescents, and young adults with recurrent or refractory Ewing sarcoma (EWS).

    Oakland, California and other locations

  • Vorasidenib (AG-881) in Participants With Residual or Recurrent Grade 2 Glioma With an IDH1 or IDH2 Mutation (INDIGO)

    Sorry, in progress, not accepting new patients

    Study AG881-C-004 is a phase 3, multicenter, randomized, double-blind, placebo-controlled study comparing the efficacy of vorasidenib to placebo in participants with residual or recurrent Grade 2 glioma with an IDH1 or IDH2 mutation who have undergone surgery as their only treatment. Participants will be required to have central confirmation of IDH mutation status prior to randomization. Approximately 340 participants are planned to be randomized 1:1 to receive orally administered vorasidenib 40 mg QD or placebo.

    San Francisco, California and other locations

  • SurVaxM Plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma (SURVIVE)

    Sorry, in progress, not accepting new patients

    The main purpose of this study is to determine whether adding SurVaxM to standard-of-care temozolomide chemotherapy is better than temozolomide treatment alone for patients with newly diagnosed glioblastoma. This study is designed to compare the length of survival in patients with newly diagnosed glioblastoma who receive temozolomide plus SurVaxM to that of patients treated with standard-of-care temozolomide plus placebo. This study aims to discover what effects, both good and bad, this combination of drugs may have on you and to see if the study drug (SurVaxM) can create an immune response in your blood that is directed against your cancer cells. This study also aims to determine whether treatment with SurVaxM plus temozolomide improves the survival of glioblastoma patients like yourself compared to treatment with temozolomide alone.

    San Francisco, California and other locations

  • Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)

    Sorry, in progress, not accepting new patients

    This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.

    Oakland, California and other locations

  • Tazemetostat in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With EZH2, SMARCB1, or SMARCA4 Gene Mutations (A Pediatric MATCH Treatment Trial)

    Sorry, in progress, not accepting new patients

    This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.

    Oakland, California and other locations

  • Temozolomide With or Without Veliparib in Treating Patients With Newly Diagnosed Glioblastoma Multiforme

    Sorry, in progress, not accepting new patients

    This randomized phase II/III trial studies how well temozolomide and veliparib work compared to temozolomide alone in treating patients with newly diagnosed glioblastoma multiforme. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether temozolomide is more effective with or without veliparib in treating glioblastoma multiforme.

    San Francisco, California and other locations

  • Tipifarnib for the Treatment of Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With HRAS Gene Alterations, a Pediatric MATCH Treatment Trial

    Sorry, in progress, not accepting new patients

    This phase II pediatric MATCH trial studies how well tipifarnib works in treating patients with solid tumors that have recurred or spread to other places in the body (advanced), lymphoma, or histiocytic disorders, that have a genetic alteration in the gene HRAS. Tipifarnib may block the growth of cancer cells that have specific genetic changes in a gene called HRAS and may reduce tumor size.

    Oakland, California and other locations

  • Newly Diagnosed High Grade Glioma Treated With Concurrent Radiation Therapy, Temozolomide and BMX-001

    Sorry, in progress, not accepting new patients

    This is a Phase 2 study of newly diagnosed patients with high grade glioma (HGG) undergoing standard radiation therapy and temozolomide treatment. BMX-001 added to radiation therapy and temozolomide has the potential not only to benefit the survival of high grade glioma patients but also to protect against deterioration of cognition and impairment of quality of life. BMX-001 will be given subcutaneously first with a loading dose zero to four days prior to the start of chemoradiation and followed by twice a week doses at one-half of the loading dose for the duration of radiation therapy plus two weeks. Both safety and efficacy of BMX-001 will be evaluated. Impact on cognition will also be assessed. Eighty patients will be randomized to the treatment arm that will receive BMX-001 while undergoing chemoradiation and 80 patients randomized to receive chemoradiation alone. The sponsor hypothesizes that BMX-001 when added to standard radiation therapy and temozolomide will be safe at pharmacologically relevant doses in patients with newly diagnosed high grade glioma. The sponsor also hypothesizes that the addition of BMX-001 will positively impact the overall survival and improve objective measures of cognition in newly diagnosed high grade glioma patients.

    San Francisco, California and other locations

  • Niraparib in Participants With Newly-diagnosed Glioblastoma and Recurrent Glioma

    Sorry, not currently recruiting here

    This is an open-label, multi-center Phase 0 study with an expansion phase that will enroll up to 24 participants with newly-diagnosed glioblastoma and up to 18 recurrent glioma participants with IDH mutation and ATRX loss. The trial will be composed of a Phase 0 component (subdivided into Arm A and B) and a therapeutic expansion phase. Patients with tumors demonstrating a positive PK Response (in Arm A) or a positive PD Response (in Arm B) of the Phase 0 component of the study will graduate to a therapeutic expansion phase that combines therapeutic dosing of niraparib plus standard-of-care fractionated radiotherapy (in Arm A) or niraparib monotherapy (in Arm B) until progression of disease.

    San Francisco, California and other locations

  • Ulixertinib in Treating Patients With Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)

    Sorry, in progress, not accepting new patients

    This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.

    Oakland, California and other locations

  • Veliparib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed Malignant Glioma Without H3 K27M or BRAFV600 Mutations

    Sorry, in progress, not accepting new patients

    This phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations compared to radiation therapy and temozolomide alone.

    Oakland, California and other locations

  • Vemurafenib in Children With Recurrent/Refractory BRAF Gene V600E (BRAFV600E)-Mutant Gliomas

    Sorry, in progress, not accepting new patients

    This is a multicenter, safety and pharmacokinetic trial to determine the MTD and/or select a recommended phase 2 dose (RP2D) of vemurafenib in children with recurrent or refractory gliomas containing the BRAFV600E or BRAF Ins T mutation.

    Oakland, California and other locations

  • Vemurafenib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With BRAF V600 Mutations (A Pediatric MATCH Treatment Trial)

    Sorry, in progress, not accepting new patients

    This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body (advanced) and have come back (recurrent) or do not respond to treatment (refractory). Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    Oakland, California and other locations

  • Vorasidenib in Combination With Temozolomide (TMZ) in IDH-mutant Glioma

    Sorry, not yet accepting patients

    The objective of this study is to determine the safety and tolerability of vorasidenib in combination with temozolomide (TMZ) and to establish the recommended combination dose (RCD) of vorasidenib. The study will begin as a Phase Ib study to determine the RCD and then will transition to a Phase II study to assess the clinical efficacy of vorasidenib at the RCD in combination with TMZ. During the treatment period participants will have study visits on day 1 and 22 of each cycle, with additional visits occurring during the first cycle of the Phase 1b study. Approximately 30 days after treatment has ended, a safety follow-up visit will occur and then participants will be followed for survival every 3 months. Study visits may include questionnaires, blood tests, ECG, vital signs, and a physical examination.

    San Francisco, California and other locations

  • Vorinostat and Temozolomide in Treating Patients With Malignant Gliomas

    Sorry, in progress, not accepting new patients

    This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.

    San Francisco, California and other locations

  • 3D Prediction of Patient-Specific Response

    Sorry, in progress, not accepting new patients

    This is a prospective, non-randomized, observational registry study evaluating a patient-specific ex vivo 3D (EV3D) assay for drug response using a patient's own biopsy or resected tumor tissue for assessing tissue response to therapy in patients with advanced cancers, including ovarian cancer, high-grade gliomas, and high-grade rare tumors.

    San Francisco, California and other locations

  • Assessing Brain Metabolism Using MRS With Deuterated Glucose

    Sorry, in progress, not accepting new patients

    This study will investigate the use of Hydrogen 1 (1H) magnetic resonance spectroscopy (MRS) with deuterated glucose (2H-glucose) to detect dynamic glucose uptake in the brain.

    San Francisco, California

  • Compassionate Use of 131I-MIBG for Patients With Malignant Pheochromocytoma

    Sorry, not accepting new patients

    This is a compassionate use protocol to allow palliative therapy for patients with malignant pheochromocytoma and paragangliomas.

    San Francisco, California

  • PROGRAM-study: Awake Mapping Versus Asleep Mapping Versus No Mapping for Glioblastoma Resections

    Sorry, not currently recruiting here

    The study is designed as an international, multicenter prospective cohort study. Patients with presumed glioblastoma (GBM) in- or near eloquent areas on diagnostic MRI will be selected by neurosurgeons. Patients will be treated following one of three study arms: 1) a craniotomy where the resection boundaries for motor or language functions will be identified by the "awake" mapping technique (awake craniotomy, AC); 2) a craniotomy where the resection boundaries for motor functions will be identified by "asleep" mapping techniques (MEPs, SSEPs, continuous dynamic mapping); 3) a craniotomy where the resection boundaries will not be identified by any mapping technique ("no mapping group"). All patients will receive follow-up according to standard practice.

    San Francisco, California and other locations

Our lead scientists for Glioma research studies include .

Last updated: