Skip to main content

Leukemia clinical trials at UCSF

84 in progress, 35 open to eligible people

Showing trials for
  • A Distress Reduction Intervention for Patients With BCR-ABL-Negative MPNs or CML on Tyrosine Kinase Inhibitors

    open to eligible people ages 18 years and up

    This trial looks at how well a distress reduction intervention, called "Being Present", works to improve the quality of life of patients with BCR-ABL-negative myeloproliferative neoplasms (MPNs) or chronic phase chronic myeloid leukemia (CP-CML) who are taking tyrosine kinase inhibitors (TKIs) and their caregivers. Mindfulness meditation is the practice of repeatedly bringing attention back to the immediate experience and may help people cope with various types of illness, stress, and worry. This may help patients and caregivers to gradually learn to disconnect from reacting to and dwelling on the past and future and instead fully experiencing the present moment.

    San Francisco, California

  • A Phase 2 Study of Ruxolitinib With Chemotherapy in Children With Acute Lymphoblastic Leukemia

    open to eligible people ages 1-21

    This is a nonrandomized study of ruxolitinib in combination with a standard multi-agent chemotherapy regimen for the treatment of B-cell acute lymphoblastic leukemia. Part 1 of the study will optimize the dose of study drug (ruxolitinib) in combination with the chemotherapy regimen. Part 2 will evaluate the efficacy of combination chemotherapy and ruxolitinib at the recommended dose determined in Part 1.

    San Francisco, California and other locations

  • A Safety and Efficacy Study of CC-90009 Combinations in Subjects With Acute Myeloid Leukemia

    open to eligible people ages 18 years and up

    CC-90009-AML-002 is an exploratory Phase 1b, open-label, multi-arm trial to evaluate the safety and efficacy of CC-90009 in combination with anti-leukemia agents in participants with acute myeloid leukemia (AML).

    San Francisco, California and other locations

  • A Study of CD19 Targeted CAR T Cell Therapy in Adult Patients With Relapsed or Refractory B Cell Acute Lymphoblastic Leukaemia (ALL)

    open to eligible people ages 18 years and up

    This is a Phase Ib/II study to evaluate the safety and efficacy of autologous T cells engineered with a chimeric antigen receptor (CAR) targeting CD19 in adult patients with relapsed or refractory B cell acute lymphoblastic leukemia (ALL).

    San Francisco, California and other locations

  • A Study of JNJ-75276617 in Participants With Acute Leukemia

    open to eligible people ages 18 years and up

    The purpose of this study is to determine the recommended Phase 2 dose(s) (RP2D[s]) of JNJ-75276617 in Part 1 (Dose Escalation) and to determine safety and tolerability at the RP2D(s) in Part 2 (Dose Expansion).

    San Francisco, California and other locations

  • A Study of NX-2127 in Adults With Relapsed/Refractory B-cell Malignancies

    open to eligible people ages 18 years and up

    This is a first-in-human Phase 1a/1b multicenter, open-label oncology study designed to evaluate the safety and anti-cancer activity of NX-2127 in patients with advanced B-cell malignancies.

    San Francisco, California and other locations

  • A Study of Oral LOXO-305 in Patients With Previously Treated CLL/SLL or NHL

    open to eligible people ages 18 years and up

    This is an open-label, multi-center Phase 1/2 study of oral LOXO-305 (pirtobrutinib) in patients with CLL/SLL and NHL who have failed or are intolerant to standard of care.

    San Francisco, California and other locations

  • A Study of Ponatinib With Chemotherapy in Children, Teenagers, and Adults With Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia

    open to eligible people ages 1-21

    This study is about an anticancer drug called ponatinib which is a tyrasine kinase inhibitor given with chemotherapy to children, teenagers, and young adults up to 21 years of age with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia who have relapsed or are resistant to other treatment. The main aims of this study are to confirm the highest dose of ponatinib tablets and minitablet capsules that can be given to participants with acceptable side effects, and to evaluate if participant's leukemia achieves remission. Participants will take ponatinib tablets with chemotherapy. For participants who cannot swallow tablets, a minitablet form of the ponatinib will be provided. Participants will take ponatinib for 10 weeks in combination with chemotherapy (reinduction and consolidation blocks) and will be followed up for at least 3 years.

    San Francisco, California and other locations

  • A Study of the Safety and Pharmacokinetics of Venetoclax in Pediatric and Young Adult Patients With Relapsed or Refractory Malignancies

    open to eligible people ages 0-25

    An open-label, global, multi-center study to evaluate the safety and pharmacokinetics of venetoclax monotherapy, to determine the dose limiting toxicity (DLT) and the recommended Phase 2 dose (RPTD), and to assess the preliminary efficacy of venetoclax in pediatric and young adult participants with relapsed or refractory malignancies.

    San Francisco, California and other locations

  • A Study to Compare Blinatumomab Alone to Blinatumomab With Nivolumab in Patients Diagnosed With First Relapse B-Cell Acute Lymphoblastic Leukemia (B-ALL)

    open to eligible people ages 1-30

    This phase II trial studies the effect of nivolumab in combination with blinatumomab compared to blinatumomab alone in treating patients with B-cell acute lymphoblastic leukemia (B-ALL) that has come back (relapsed). Down syndrome patients with relapsed B-ALL are included in this study. Blinatumomab is an antibody, which is a protein that identifies and targets specific molecules in the body. Blinatumomab searches for and attaches itself to the cancer cell. Once attached, an immune response occurs which may kill the cancer cell. Nivolumab is a medicine that may boost a patient's immune system. Giving nivolumab in combination with blinatumomab may cause the cancer to stop growing for a period of time, and for some patients, it may lessen the symptoms, such as pain, that are caused by the cancer.

    San Francisco, California and other locations

  • A Study to Compare Standard Chemotherapy to Therapy With CPX-351 and/or Gilteritinib for Patients With Newly Diagnosed AML With or Without FLT3 Mutations

    open to eligible people ages up to 22 years

    This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.

    Oakland, California and other locations

  • A Study to Investigate Blinatumomab in Combination With Chemotherapy in Patients With Newly Diagnosed B-Lymphoblastic Leukemia

    open to eligible people ages up to 31 years

    This phase III trial studies how well blinatumomab works in combination with chemotherapy in treating patients with newly diagnosed, standard risk B-lymphoblastic leukemia or B-lymphoblastic lymphoma with or without Down syndrome. Monoclonal antibodies, such as blinatumomab, may induce changes in the body's immune system and may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs, such as vincristine, dexamethasone, prednisone, prednisolone, pegaspargase, methotrexate, cytarabine, mercaptopurine, doxorubicin, cyclophosphamide, and thioguanine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Leucovorin decreases the toxic effects of methotrexate. Giving monoclonal antibody therapy with chemotherapy may kill more cancer cells. Giving blinatumomab and combination chemotherapy may work better than combination chemotherapy alone in treating patients with B-ALL. This trial also assigns patients into different chemotherapy treatment regimens based on risk (the chance of cancer returning after treatment). Treating patients with chemotherapy based on risk may help doctors decide which patients can best benefit from which chemotherapy treatment regimens.

    Oakland, California and other locations

  • Chemoimmunotherapy and Allogeneic Stem Cell Transplant for NK T-cell Leukemia/Lymphoma

    open to eligible people ages 1-31

    Patients are in 2 cohorts: Cohort 1: dexamethasone, methotrexate, ifosfamide, pegaspargase, and etoposide (modified SMILE) chemotherapy regimen alone and pembrolizumab in children, adolescents, and young adults with advanced stage NK lymphoma and leukemia Cohort 2: combining pralatrexate (PRX) (Cycles 1, 2, 4, 6) and brentuximab vedotin (BV) (Cycles 3, 5) to cyclophosphamide, doxorubicin, and prednisone in children, adolescent, and young adults with advanced peripheral T-cell lymphoma (non-anaplastic large cell lymphoma or non-NK lymphoma/leukemia) . Both groups proceed to allogeneic stem cell transplant with disease response.

    San Francisco, California and other locations

  • CPX-351 and Glasdegib for Newly Diagnosed Acute Myelogenous Leukemia With MDS Related Changes or Therapy-related Acute Myeloid Leukemia

    open to eligible people ages 18 years and up

    This is a phase 2 single-arm, open-label clinical trial determining efficacy of CPX-351 in combination with Glasdegib in subjects with Acute Myelogenous Leukemia with myelodysplastic syndrome related changes or therapy-related acute myeloid leukemia.

    San Francisco, California and other locations

  • Gilteritinib vs Midostaurin in FLT3 Mutated Acute Myeloid Leukemia

    open to eligible people ages 18-70

    Eligible untreated patients with FLT3 acute myeloid leukemia (AML) between the ages of 18 and 70 will be randomized to receive gilteritinib or midostaurin during induction and consolidation. Patients will also receive standard chemotherapy of daunorubicin and cytarabine during induction and high-dose cytarabine during consolidation. Gilteritinib, is an oral drug that works by stopping the leukemia cells from making the FLT3 protein. This may help stop the leukemia cells from growing faster and thus may help make chemotherapy more effective. Gilteritinib has been approved by the Food and Drug Administration (FDA) for patients who have relapsed or refractory AML with a FLT3 mutation but is not approved by the FDA for newly diagnosed FLT3 AML, and its use in this setting is considered investigational. Midostaurin is an oral drug that works by blocking several proteins on cancer cells, including FLT3 that can help leukemia cells grow. Blocking this pathway can cause death to the leukemic cells. Midostaurin is approved by the FDA for the treatment of FLT3 AML. The purpose of this study is to compare the effectiveness of gilteritinib to midostaurin in patients receiving combination chemotherapy for FLT3 AML.

    Clovis, California and other locations

  • Imatinib Mesylate and Combination Chemotherapy in Treating Patients With Newly Diagnosed Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    open to eligible people ages 1-21

    This randomized phase III trial studies how well imatinib mesylate works in combination with two different chemotherapy regimens in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia (ALL). Imatinib mesylate has been shown to improve outcomes in children and adolescents with Philadelphia chromosome positive (Ph+) ALL when given with strong chemotherapy, but the combination has many side effects. This trial is testing whether a different chemotherapy regimen may work as well as the stronger one but have fewer side effects when given with imatinib. The trial is also testing how well the combination of chemotherapy and imatinib works in another group of patients with a type of ALL that is similar to Ph+ ALL. This type of ALL is called "ABL-class fusion positive ALL", and because it is similar to Ph+ ALL, is thought it will respond well to the combination of agents used to treat Ph+ ALL.

    Oakland, California and other locations

  • Inotuzumab Ozogamicin and Post-Induction Chemotherapy in Treating Patients With High-Risk B-ALL, Mixed Phenotype Acute Leukemia, and B-LLy

    open to eligible people ages 1-24

    This phase III trial studies whether inotuzumab ozogamicin added to post-induction chemotherapy for patients with High-Risk B-cell Acute Lymphoblastic Leukemia (B-ALL) improves outcomes. This trial also studies the outcomes of patients with mixed phenotype acute leukemia (MPAL), and B-lymphoblastic lymphoma (B-LLy) when treated with ALL therapy without inotuzumab ozogamicin. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a type of chemotherapy called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Other drugs used in the chemotherapy regimen, such as cyclophosphamide, cytarabine, dexamethasone, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, prednisone, thioguanine, vincristine, and pegaspargase work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial will also study the outcomes of patients with mixed phenotype acute leukemia (MPAL) and disseminated B lymphoblastic lymphoma (B-LLy) when treated with high-risk ALL chemotherapy. The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, in order to classify patients into post-consolidation treatment groups. On the second part of this study, patients will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.

    Oakland, California and other locations

  • IO-202 as Monotherapy and IO-202 Plus Azacitidine in Patients in AML and CMML

    open to eligible people ages 18 years and up

    To assess safety and tolerability at increasing dose levels of IO-202 as monotherapy and in combination with Azacitidine in successive cohorts of participants with relapsed or refractory AML with monocytic differentiation and CMML in order to estimate the maximum tolerated dose (MTD) or maximum administered dose (MAD) and select the recommended Phase 2 dose (RP2D) and dose schedule as monotherapy and combination therapy.

    San Francisco, California and other locations

  • Larotrectinib in Treating Patients With Previously Untreated TRK Fusion Solid Tumors and TRK Fusion Relapsed Acute Leukemia

    open to eligible people ages up to 30 years

    This phase II trial studies the side effects and how well larotrectinib works in treating patients with previously untreated TRK fusion solid tumors and TRK fusion acute leukemia that has come back. Larotrectinib may stop the growth of cancer cells with TRK fusions by blocking the TRK enzymes needed for cell growth.

    San Francisco, California and other locations

  • Phase 1 Study of the Dual MDM2/MDMX Inhibitor ALRN-6924 in Pediatric Cancer

    open to eligible people ages 1-21

    This research study is studying a novel drug called ALRN-6924 as a possible treatment for resistant (refractory) solid tumor, brain tumor, lymphoma or leukemia. The drugs involved in this study are: - ALRN-6924 - Cytarabine (for patients with leukemia only)

    San Francisco, California and other locations

  • Safety and Effectiveness of Quizartinib in Children and Young Adults With Acute Myeloid Leukemia (AML), a Cancer of the Blood

    open to eligible people ages 1 month to 21 years

    Quizartinib is an experimental drug. It is not approved for regular use. It can only be used in medical research. Children or young adults with a certain kind of blood cancer (FLT3-ITD AML) might be able to join this study if it has come back after remission or is not responding to treatment.

    San Francisco, California and other locations

  • Study Evaluating Brexucabtagene Autoleucel (KTE-X19) in Pediatric and Adolescent Participants With Relapsed/Refractory B-precursor Acute Lymphoblastic Leukemia or Relapsed/Refractory B-Cell Non-Hodgkin Lymphoma

    open to eligible people ages up to 21 years

    The primary objectives of this study are to evaluate the safety and efficacy of brexucabtagene autoleucel (KTE-X19) in pediatric and adolescent participants with relapsed/refractory (r/r) B-precursor acute lymphoblastic leukemia (ALL) or relapsed or refractory (r/r) B-cell non-Hodgkin lymphoma (NHL).

    San Francisco, California and other locations

  • Study Evaluating Safety and Efficacy of JCAR017 in Subjects With Relapsed or Refractory Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL)

    open to eligible people ages 18 years and up

    This is a Phase 1/2, open-label, multicenter study to determine the efficacy and safety of JCAR017 in adult subjects with relapsed or refractory CLL or SLL. The study will include a Phase 1 part to determine the recommended dose of JCAR017 monotherapy in subjects with relapsed or refractory CLL or SLL, followed by a Phase 2 part to further assess the efficacy and safety of JCAR017 monotherapy treatment at the recommended dose. A separate Phase 1 cohort will assess the combination of JCAR017 and concurrent ibrutinib. Another separate Phase 1 cohort will assess the combination of JCAR017 and concurrent venetoclax. In all subjects, the safety, efficacy, and pharmacokinetics (PK) of JCAR017 will be evaluated.

    San Francisco, California and other locations

  • Study Evaluating Safety and Efficacy of UCART123 in Patients With Relapsed/ Refractory Acute Myeloid Leukemia

    open to eligible people ages 18-65

    Phase I, first-in-human, open-label, dose-escalation and dose-expansion study evaluating the safety and efficacy of UCART targeting CD123 in patients with relapsed/refractory acute myeloid leukemia (AML). The purpose of this study is to evaluate the safety and clinical activity of UCART123v1.2 and determine the Maximum Tolerated Dose (MTD) and Recommended Phase 2 Dose (RP2D).

    San Francisco, California and other locations

  • Study of Biomarker-Based Treatment of Acute Myeloid Leukemia

    open to eligible people ages 18 years and up

    This screening and multi-sub-study Phase 1b/2 trial will establish a method for genomic screening followed by assigning and accruing simultaneously to a multi-study "Master Protocol (BAML-16-001-M1)." The specific subtype of acute myeloid leukemia will determine which sub-study, within this protocol, a participant will be assigned to evaluate investigational therapies or combinations with the ultimate goal of advancing new targeted therapies for approval. The study also includes a marker negative sub-study which will include all screened patients not eligible for any of the biomarker-driven sub-studies.

    San Francisco, California and other locations

  • Study of Efficacy and Safety of Tisagenlecleucel in HR B-ALL EOC MRD Positive Patients

    open to eligible people ages 1-25

    This is a single arm, open-label, multi-center, phase II study to determine the efficacy and safety of tisagenlecleucel in de novo HR pediatric and young adult B-ALL patients who received first-line treatment and are EOC MRD positive. The study will have the following sequential phases: screening, pre-treatment, treatment & follow-up, and survival. After tisagenlecleucel infusion, patient will have assessments performed more frequently in the first month and then at Day 29, then every 3 months for the first year, every 6 months for the second year, then yearly until the end of the study. Efficacy and safety will be assessed at study visits and as clinically indicated throughout the study. The study is expected to end in approximately 8 years after first patient first treatment (FPFT). A post-study long term follow-up for lentiviral vector safety will continue under a separate protocol per health authority guidelines.

    San Francisco, California and other locations

  • The EndRAD Trial: Eliminating Total Body Irradiation (TBI) for NGS-MRD Negative Children, Adolescents, and Young Adults With B-ALL

    open to eligible people ages 1-25

    This study will evaluate the use of non- TBI (total body irradiation) conditioning for B-ALL patients with low risk of relapse as defined by absence of NGS-MRD (next generation sequencing minimal residual disease) before receiving a hematopoietic cell transplant (HCT). Patients diagnosed with B-ALL who are candidates for HCT will be screened by NGS-MRD on a test of bone marrow done before the HCT. Subjects who are pre-HCT NGS-MRD negative will be eligible to receive a non-TBI conditioning regimen as part of the treatment cohort of the study. Subjects who are pre-HCT NGS-MRD positive will be treated as per treating center standard and will be followed in an observational cohort (HCT center standard of care).

    Oakland, California and other locations

  • Trametinib in Treating Patients With Relapsed or Refractory Juvenile Myelomonocytic Leukemia

    open to eligible people ages 1 month to 21 years

    This phase II trial studies how well trametinib works in treating patients with juvenile myelomonocytic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    San Francisco, California and other locations

  • Valemetostat Tosylate (DS-3201b), an Enhancer of Zeste Homolog (EZH) 1/2 Dual Inhibitor, for Relapsed/Refractory Peripheral T-Cell Lymphoma (VALENTINE-PTCL01)

    open to eligible people ages 18 years and up

    This study will characterize the safety and clinical benefit of valemetostat tosylate in participants with relapsed/refractory peripheral T-cell lymphoma, including relapsed/refractory adult T-cell leukemia/lymphoma.

    San Francisco, California and other locations

  • Vincristine Sulfate Liposome Injection (Marqibo®) in Combination With UK ALL R3 Induction Chemotherapy for Children, Adolescents, and Young Adults With Relapsed ALL

    open to eligible people ages 1-21

    This is a pilot study utilizing Marqibo® (vincristine sulfate liposome injection) combined with dexamethasone, mitoxantrone and asparaginase (UK ALL R3) for relapsed acute lymphoblastic leukemia (ALL).

    San Francisco, California and other locations

  • A Multicenter Access and Distribution Protocol for Unlicensed Cryopreserved Cord Blood Units (CBUs)

    open to all eligible people

    This study is an access and distribution protocol for unlicensed cryopreserved cord blood units (CBUs) in pediatric and adult patients with hematologic malignancies and other indications.

    Oakland, California and other locations

  • Biomarker Verification in Pediatric Chronic GvHD: ABLE 2.0 / PTCTC GVH 1901 Study

    open to eligible people ages 0-24

    This study will validate a previously developed pediatric prognostic biomarker algorithm aimed at improving prediction of risk for the later development of chronic graft-versus-host disease (cGvHD) in children and young adults undergoing allogeneic hematopoietic stem cell transplant. By developing an early risk stratification of patients into low-, intermediate-, and high-risk for future cGvHD development (based upon their biomarker profile, before the onset of cGvHD), pre-emptive therapies aimed at preventing the onset of cGvHD can be developed based upon an individual's biological risk profile. This study will also continue research into diagnostic biomarkers of cGvHD, and begin work into biomarker models that predict clinical response to cGvHD therapies.

    San Francisco, California and other locations

  • Collecting and Storing Tissue From Young Patients With Cancer

    open to eligible people ages up to 21 years

    This laboratory study is collecting and storing tissue, blood, and bone marrow samples from young patients with cancer. Collecting and storing samples of tissue, blood, and bone marrow from patients with cancer to study in the laboratory may help doctors learn more about changes that may occur in DNA and identify biomarkers related to cancer.

    Oakland, California and other locations

  • Long-Term Follow-Up of Patients Who Have Participated in Children's Oncology Group Studies

    open to all eligible people

    This clinical trial keeps track of and collects follow-up information from patients who are currently enrolled on or have participated in a Children's Oncology Group study. Developing a way to keep track of patients who have participated in Children's Oncology Group studies may allow doctors learn more about the long-term effects of cancer treatment and help them reduce problems related to treatment and improve patient quality of life.

    San Francisco, California and other locations

  • The Pediatric Acute Leukemia (PedAL) Screening Trial - A Study to Test Bone Marrow and Blood in Children With Leukemia That Has Come Back After Treatment or Is Difficult to Treat - A Leukemia & Lymphoma Society and Children's Oncology Group Study

    open to eligible people ages up to 22 years

    This study aims to use clinical and biological characteristics of acute leukemias to screen for patient eligibility for available pediatric leukemia sub-trials. Testing bone marrow and blood from patients with leukemia that has come back after treatment or is difficult to treat may provide information about the patient's leukemia that is important when deciding how to best treat it, and may help doctors find better ways to diagnose and treat leukemia in children, adolescents, and young adults.

    San Francisco, California and other locations

  • CPX-351 Plus Enasidenib for Relapsed AML

    Sorry, currently not accepting new patients, but might later

    This trial evaluates how well CPX-351 and enasidenib work in treating patients with acute myeloid leukemia characterized by IHD2 mutation. Drugs used in chemotherapy, such as CPX-351, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Enasidenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving CPX-351 and enasidenib may work better in treating patients with acute myeloid leukemia, compared to giving only one of these therapies alone.

    San Francisco, California and other locations

  • Cancer Care Delivery in Adolescent and Young Adult Patients With Acute Lymphoblastic Leukemia

    Sorry, currently not accepting new patients, but might later

    This study investigates cancer care delivery in adolescent and young adult patients with acute lymphoblastic leukemia. Surveying institutions, evaluating delivery of care at the patient level and seeking input from healthcare providers may help doctors increase rates of adherence to National Comprehensive Cancer Network (NCCN) treatment guidelines. It may also improve care for adolescent and young adult patients with acute lymphoblastic leukemia.

    Oakland, California and other locations

  • CTL019 Out of Specification MAP for ALL or DLBCL Patients

    Sorry, not accepting new patients

    Managed Access Program (MAP) to provide access to CTL019, for acute lymphoblastic leukemia (ALL) or diffuse large b-cell lymphoma (DLBCL) patients with out of specification leukapheresis product and/or manufactured tisagenlecleucel out of specification for commercial release.

    San Francisco, California and other locations

  • 9-ING-41 in Patients With Advanced Cancers

    Sorry, not currently recruiting here

    GSK-3β is a potentially important therapeutic target in human malignancies. The Actuate 1801 Phase 1/2 study is designed to evaluate the safety and efficacy of 9-ING-41, a potent GSK-3β inhibitor, as a single agent and in combination with cytotoxic agents, in patients with refractory cancers.

    San Francisco, California and other locations

  • A Pediatric and Young Adult Trial of Genetically Modified T Cells Directed Against CD19 for Relapsed/Refractory CD19+ Leukemia

    Sorry, in progress, not accepting new patients

    Patients with relapsed or refractory leukemia often develop resistance to chemotherapy. For this reason, we are attempting to use T cells obtained directly from the patient, which can be genetically modified to express a chimeric antigen receptor (CAR). The CAR enables the T cell to recognize and kill the leukemic cell through the recognition of CD19, a protein expressed of the surface of the leukemic cell in patients with CD19+ leukemia. This is a phase 1/2 study designed to determine the maximum tolerated dose of the CAR+ T cells as well as to determine the efficacy. The phase 1 cohort is restricted to those patients who have already had an allogeneic hematopoietic cell transplant (HCT). The phase 2 is open to all patients regardless of having a history of HCT.

    Oakland, California and other locations

  • A Study Evaluating the Safety and Efficacy of Brexucabtagene Autoleucel (KTE-X19) in Adult Subjects With Relapsed/Refractory B-precursor Acute Lymphoblastic Leukemia (ZUMA-3)

    Sorry, in progress, not accepting new patients

    The primary objectives of this study are to determine the safety and efficacy of brexucabtagene autoleucel (KTE-X19) in adult participants with relapsed/refractory (r/r) B-precursor acute lymphoblastic leukemia (ALL).

    San Francisco, California and other locations

  • A Study of ASP2215 Versus Salvage Chemotherapy in Patients With Relapsed or Refractory Acute Myeloid Leukemia (AML) With FMS-like Tyrosine Kinase (FLT3) Mutation

    Sorry, in progress, not accepting new patients

    The purpose of this study is to determine the clinical benefit of ASP2215 therapy in participants with FMS-like tyrosine kinase (FLT3) mutated acute myeloid leukemia (AML) who are refractory to or have relapsed after first-line AML therapy as shown with overall survival (OS) compared to salvage chemotherapy, and to determine the efficacy of ASP2215 therapy as assessed by the rate of complete remission and complete remission with partial hematological recovery (CR/CRh) in these participants. This study will also determine the overall efficacy in event-free survival (EFS) and complete remission (CR) rate of ASP2215 compared to salvage chemotherapy.

    San Francisco, California and other locations

  • A Study of ASTX660 as a Single Agent and in Combination With ASTX727 in Subjects With Relapsed/Refractory Acute Myeloid Leukemia (AML)

    Sorry, in progress, not accepting new patients

    To evaluate the safety, pharmacokinetics (PK), and efficacy of ASTX660 when given alone and in combination with ASTX727 in participants with relapsed/refractory (R/R) acute myeloid leukemia (AML). The duration of the study is expected to be approximately 30 months.

    San Francisco, California and other locations

  • A Study of PRT543 in Participants With Advanced Solid Tumors and Hematologic Malignancies

    Sorry, in progress, not accepting new patients

    This is a Phase 1 cohort, dose-escalation, dose-expansion study of PRT543 in patients with advanced cancers who have exhausted available treatment options. The purpose of this study is to define a safe dose and schedule to be used in subsequent development of PRT543.

    San Francisco, California and other locations

  • A Study to Evaluate the Efficacy and Safety of Daratumumab in Pediatric and Young Adult Participants Greater Than or Equal to (>=)1 and Less Than or Equal to (<=) 30 Years of Age With Relapsed/Refractory Precursor B-cell or T-cell Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    Sorry, in progress, not accepting new patients

    The purpose of this study is to evaluate the efficacy of daratumumab in addition to standard chemotherapy in pediatric participants with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL)/lymphoblastic lymphoma (LL) and T-cell ALL/LL as measured by the complete response (CR) rate.

    Oakland, California and other locations

  • A Trial of the FMS-like Tyrosine Kinase 3 (FLT3) Inhibitor Gilteritinib Administered as Maintenance Therapy Following Allogeneic Transplant for Patients With FLT3/Internal Tandem Duplication (ITD) Acute Myeloid Leukemia (AML)

    Sorry, in progress, not accepting new patients

    The purpose of this study is to compare relapse-free survival between participants with FLT3/ITD AML in first morphologic complete remission (CR1) who undergo hematopoietic stem cell transplant (HCT) and are randomized to receive gilteritinib or placebo beginning after the time of engraftment for a two year period.

    San Francisco, California and other locations

  • Azacitidine and Combination Chemotherapy in Treating Infants With Acute Lymphoblastic Leukemia and KMT2A Gene Rearrangement

    Sorry, in progress, not accepting new patients

    This pilot phase II trial studies the side effects of azacitidine and combination chemotherapy in infants with acute lymphoblastic leukemia and KMT2A gene rearrangement. Drugs used in chemotherapy, such as methotrexate, prednisolone, daunorubicin hydrochloride, cytarabine, dexamethasone, vincristine sulfate, pegaspargase, hydrocortisone sodium succinate, azacitidine, cyclophosphamide, mercaptopurine, leucovorin calcium, and thioguanine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug may kill more cancer cells.

    Oakland, California and other locations

  • Blinatumomab in Treating Younger Patients With Relapsed B-cell Acute Lymphoblastic Leukemia

    Sorry, in progress, not accepting new patients

    This randomized phase III trial studies how well blinatumomab works compared with standard combination chemotherapy in treating patients with B-cell acute lymphoblastic leukemia that has returned after a period of improvement (relapsed). Immunotherapy with blinatumomab may allow the body's immune system to attack and destroy some types of leukemia cells. It is not yet known whether blinatumomab is more effective than standard combination chemotherapy in treating relapsed B-cell acute lymphoblastic leukemia.

    Oakland, California and other locations

  • Bortezomib and Sorafenib Tosylate in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    Sorry, in progress, not accepting new patients

    This randomized phase III trial studies how well bortezomib and sorafenib tosylate work in treating patients with newly diagnosed acute myeloid leukemia. Bortezomib and sorafenib tosylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib and sorafenib tosylate together with combination chemotherapy may be an effective treatment for acute myeloid leukemia.

    Oakland, California and other locations

  • Caloric Restriction and Activity to Reduce Chemoresistance in B-ALL

    Sorry, not currently recruiting here

    This study is for older children, adolescents, and young adults with B-cell Acute Lymphoblastic Leukemia (B-ALL). Higher amounts of body fat is associated with resistance to chemotherapy in patients with B-ALL. Chemotherapy during the first month causes large gains in body fat in most people, even those who start chemotherapy at a healthy weight. This study is being done to find out if caloric restriction achieved by a personalized nutritional menu and exercise plan during routine chemotherapy can make the patient's ALL more sensitive to chemotherapy and also reduce the amount of body fat gained during treatment. The goals of this study are to help make chemotherapy more effective in treating the patient's leukemia as demonstrated by fewer patients with leukemia minimal residual disease (MRD) while also trying to reduce the amount of body fat that chemotherapy causes the patient to gain in the first month.

    San Francisco, California and other locations

  • Combination Chemotherapy in Treating Young Patients With Newly Diagnosed Acute Promyelocytic Leukemia

    Sorry, in progress, not accepting new patients

    This phase III trial is studying combination chemotherapy to see how well it works in treating young patients with newly diagnosed acute promyelocytic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells.

    Oakland, California and other locations

  • Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk B Acute Lymphoblastic Leukemia and Ph-Like TKI Sensitive Mutations

    Sorry, in progress, not accepting new patients

    This randomized phase III trial studies how well combination chemotherapy works in treating young patients with newly diagnosed B acute lymphoblastic leukemia that is likely to come back or spread, and in patients with Philadelphia chromosome (Ph)-like tyrosine kinase inhibitor (TKI) sensitive mutations. Chemotherapy drugs, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and giving the drugs in different doses and in different combinations may kill more cancer cells.

    Oakland, California and other locations

  • Combination Chemotherapy in Treating Young Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma

    Sorry, in progress, not accepting new patients

    This randomized phase III trial is studying different combination chemotherapy regimens and their side effects and comparing how well they work in treating young patients with newly diagnosed T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. After a common induction therapy, patients were risk assigned and eligible for one or both post-induction randomizations: Escalating dose Methotrexate versus High Dose Methotrexate in Interim Maintenance therapy, No Nelarabine versus Nelarabine in Consolidation therapy. T-ALL patients are risk assigned as Low Risk, Intermediate Risk or High Risk. Low Risk patients are not eligible for the Nelarabine randomization, Patients with CNS disease at diagnosis were assgined to receive High Dose Methotrexate, patients who failed induction therapy were assigned to receive Nelarabine and High Dose Methotrexate. T-LLy patients were all assigned to escalating dose Methotrexate and were risk assigned as Standard Risk, High Risk and induction failures. Standard risk patients did not receive nelarabine, High risk T-LLy patients were randomized to No Nelarabine versus Nelarabine, and Induction failures were assigned to receive Nelarabine.

    Oakland, California and other locations

  • Combination Chemotherapy With or Without Bortezomib in Treating Younger Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Stage II-IV T-Cell Lymphoblastic Lymphoma

    Sorry, in progress, not accepting new patients

    This randomized phase III trial compares how well combination chemotherapy works when given with or without bortezomib in treating patients with newly diagnosed T-cell acute lymphoblastic leukemia or stage II-IV T-cell lymphoblastic lymphoma. Bortezomib may help reduce the number of leukemia or lymphoma cells by blocking some of the enzymes needed for cell growth. It may also help chemotherapy work better by making cancer cells more sensitive to the drugs. It is not yet known if giving standard chemotherapy with or without bortezomib is more effective in treating newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.

    Oakland, California and other locations

  • Combination Chemotherapy With or Without Lestaurtinib in Treating Younger Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    Sorry, in progress, not accepting new patients

    This phase III trial studies combination chemotherapy with or without lestaurtinib with to see how well they work in treating younger patients with newly diagnosed acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of stop cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Lestaurtinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether combination chemotherapy is more effective with or without lestaurtinib in treating acute lymphoblastic leukemia.

    Oakland, California and other locations

  • Companion for CAR-T Web App During Chimeric Antigen Receptor T-cell Therapy

    Sorry, not yet accepting patients

    The complex logistics and unique toxicities of chimeric antigen receptor T-cell (CAR-T) therapy require intensive patient education and careful monitoring. The Companion for CAR-T (CC) web app may be able to assist with patient education and preparation, communication between patients and their multidisciplinary teams, and home-based toxicity monitoring.

    San Francisco, California

  • Cord Blood Transplant With OTS for the Treatment of HIV Positive Hematologic Cancers

    Sorry, not currently recruiting here

    This phase II trial studies the side effects of a cord blood transplant using OTS and to see how well it works in treating patients with human immunodeficiency virus (HIV) positive hematologic (blood) cancers. After a cord blood transplant, the immune cells, including white blood cells, can take a while to recover, putting the patient at increased risk of infection. OTS consists of blood stem cells that help to produce mature blood cells, including immune cells. Drugs used in chemotherapy, such as fludarabine, cyclophosphamide, and thiotepa, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Total body irradiation is a type of whole-body radiation. Giving chemotherapy and total-body irradiation before a cord blood transplant with OTS may help to kill any cancer cells that are in the body and make room in the patient's bone marrow for new stem cells to grow and reduce the risk of infection.

    San Francisco, California and other locations

  • CPX-351 and Gemtuzumab Ozogamicin in Treating Patients With Relapsed Acute Myeloid Leukemia

    Sorry, not currently recruiting here

    This phase Ib trial studies the best dose of gemtuzumab ozogamicin when given together with CPX-351 in treating patients with acute myeloid leukemia that has come back after it was previously in remission. CPX-351 is a chemotherapy, which works in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Gemtuzumab ozogamicin is a monoclonal antibody, called gemtuzumab, linked to chemotherapy called calicheamicin. Gemtuzumab attaches to CD33 (transmembrane receptor) positive cancer cells in a targeted way and delivers ozogamicin to kill them. Giving CPX-351 and gemtuzumab ozogamicin may work better in treating patients with acute myeloid leukemia, compared to giving only one of these therapies alone.

    San Francisco, California and other locations

  • Efficacy of Oral Azacitidine Plus Best Supportive Care as Maintenance Therapy in Subjects With Acute Myeloid Leukemia (AML) in Complete Remission

    Sorry, in progress, not accepting new patients

    This study enrolled 472 participants, aged 55 or older, with a diagnosis of de novo acute myeloid leukemia (AML) or AML secondary to prior myelodysplastic disease or chronic myelomonocytic leukemia (CMML), and who have achieved first complete remission (CR)/ complete remission with incomplete blood count recovery (CRi) following induction with or without consolidation chemotherapy. The study is amended to include an extension phase (EP). The EP allows participants who are currently receiving oral azacitidine and who are demonstrating clinical benefit as assessed by the investigator, to continue receiving oral azacitidine after unblinding by sponsor until the participant meets the criteria for study discontinuation or until oral azacitidine becomes commercially available and reimbursed. In addition, all participants in the placebo arm and participants who had been discontinued from the treatment phase (irrespective of randomization arm) and continuing in the follow-up phase will be followed for survival in the EP.

    Fresno, California and other locations

  • Flotetuzumab for the Treatment of Pediatric Recurrent or Refractory Acute Myeloid Leukemia

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects and best dose of flotetuzumab and how well it works in treating patients with acute myeloid leukemia that has come back (recurrent) or has not responded to treatment (refractory). Immunotherapy with flotetuzumab may induce changes in the body's immune system and may interfere with the ability of leukemia cells to grow and spread. Giving flotetuzumab may stop the leukemia from growing or shrink for a period of time, as well as possibly lessening symptoms, such as pain, that are caused by the leukemia.

    San Francisco, California and other locations

  • Flotetuzumab in Primary Induction Failure (PIF) or Early Relapse (ER) Acute Myeloid Leukemia (AML)

    Sorry, in progress, not accepting new patients

    Open-label, multi-dose, single-arm, multi-center, Phase 1/2 study conducted in three segments: the Single Patient Dose Escalation Segment (complete), followed by the Multi-Patient Dose Escalation Segment (complete) and the Maximum Tolerated Dose and Schedule (MTDS) Expansion Cohort Segment (ongoing). Having characterized safety and determined the maximum tolerated dose and schedule, the primary objective of this study now is to assess the anti-neoplastic activity of flotetuzumab in patients with PIF/ER AML, as determined by the proportion of patients who achieve CR or CRh. Starting with Cycle 2, patients who are benefiting from flotetuzumab may receive up to a maximum of 8 cycles of treatment. Patients will receive daily increasing doses of flotetuzumab for the first week of Cycle 1 (Lead-In Dosing) followed by 3 weeks of continuous intravenous infusion at a specifiedthe assigned dose. Subsequent cycles are each 4 weeks of continuous infusion at the assigned dose. Dosing may continue for up to 8 cycles. Follow up visits may continue for 6 months after treatment is discontinued.

    San Francisco, California and other locations

  • Fludarabine and Rituximab With or Without Lenalidomide or Cyclophosphamide in Treating Patients With Symptomatic Chronic Lymphocytic Leukemia

    Sorry, in progress, not accepting new patients

    This randomized phase II trial studies how well fludarabine (fludarabine phosphate) and rituximab with or without lenalidomide or cyclophosphamide work in treating patients with symptomatic chronic lymphocytic leukemia. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as rituximab, may block cancer growth in different ways by targeting certain cells. Lenalidomide may stimulate the immune system in different ways and stop cancer cells from growing. Giving fludarabine phosphate and rituximab together with lenalidomide or cyclophosphamide may be an effective treatment for chronic lymphocytic leukemia.

    San Francisco, California and other locations

  • Ibrutinib and Azacitidine for Treatment of Higher Risk Myelodysplastic Syndrome

    Sorry, in progress, not accepting new patients

    This phase Ib trial studies the side effects and best dose of ibrutinib when given together with azacitidine in treating patients with myelodysplastic syndrome that is likely to occur or spread (higher risk) and who were previously treated or untreated and unfit for or refused intense therapy. Ibrutinib and azacitidine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    San Francisco, California and other locations

  • Inotuzumab Ozogamicin in Treating Younger Patients With B-Lymphoblastic Lymphoma or Relapsed or Refractory CD22 Positive B Acute Lymphoblastic Leukemia

    Sorry, in progress, not accepting new patients

    This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.

    Oakland, California and other locations

  • KIR Favorable Mismatched Haplo Transplant and KIR Polymorphism in ALL/AML/MDS Allo-HCT Children

    Sorry, accepting new patients by invitation only

    This is a phase II, open-label, non-randomized, prospective study of haploidentical transplantation using KIR-favorable donors for children with acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) undergoing allogeneic hematopoietic cell transplantation (HCT). The relationship of KIR2DL1 polymorphisms to survival in children with these diseases undergoing any approach to allogeneic HCT during the study time frame will also be determined.

    Oakland, California and other locations

  • Lactobacillus Plantarum in Preventing Acute Graft Versus Host Disease in Children Undergoing Donor Stem Cell Transplant

    Sorry, in progress, not accepting new patients

    This randomized phase III trial studies how well Lactobacillus plantarum works in preventing acute graft versus host disease in children undergoing donor stem cell transplant. Lactobacillus plantarum may help prevent the development of gastrointestinal graft versus host disease in children, adolescents, and young adults undergoing donor stem cell transplant.

    Oakland, California and other locations

  • Liposome-encapsulated Daunorubicin-Cytarabine, Fludarabine Phosphate, Cytarabine, and Filgrastim in Treating Younger Patients With Relapsed or Refractory Acute Myeloid Leukemia

    Sorry, in progress, not accepting new patients

    This phase I/II trial studies the side effects and best dose of liposome-encapsulated daunorubicin-cytarabine when given with fludarabine phosphate, cytarabine, and filgrastim and to see how well they work in treating younger patients with acute myeloid leukemia that has come back after treatment (relapsed) or is not responding to treatment (is refractory). Liposome-encapsulated daunorubicin-cytarabine is made up of two chemotherapy drugs, cytarabine and daunorubicin hydrochloride, and works to stop cancer cell growth by blocking the cells from dividing. Drugs used in chemotherapy, such as fludarabine phosphate and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Filgrastim may increase the production of blood cells and may help the immune system recover from the side effects of chemotherapy. Giving liposome-encapsulated daunorubicin-cytarabine followed by fludarabine phosphate, cytarabine, and filgrastim may be a better treatment for patients with relapsed acute myeloid leukemia and may cause fewer side effects to the heart, a common effect of other chemotherapy treatments for acute myeloid leukemia.

    Oakland, California and other locations

  • Matched Targeted Therapy For High-Risk Leukemias and MDS

    Sorry, in progress, not accepting new patients

    This research study is seeking to gain new knowledge about Recurrent, Refractory, or High Risk Leukemias in children and young adults. This study is evaluating the use of specialized testing called leukemia profiling. Once the profiling is performed, the results are evaluated by an expert panel of physicians, scientists and pharmacists. This may result in a recommendation for a specific cancer therapy or a clinical trial called matched targeted therapy (MTT). The results of the leukemia profiling and, if applicable, the MTT recommendation will be communicated to the participant's primary oncologist.

    San Francisco, California and other locations

  • Palbociclib in Combination With Chemotherapy in Treating Children With Relapsed Acute Lymphoblastic Leukemia (ALL) or Lymphoblastic Lymphoma (LL)

    Sorry, in progress, not accepting new patients

    AINV18P1 is a Phase 1 study where palbociclib will be administrated in combination with a standard re-induction platform in pediatric relapsed Acute Lymphoblastic Leukemia (ALL) and lymphoblastic lymphoma (LL). LL patients are included because the patient population is rare and these patients are most commonly treated with ALL regimens. The proposed palbociclib starting dose for this study will be 50 mg/m2/day for 21 days.

    Palo Alto, California and other locations

  • Pevonedistat, Azacitidine, Fludarabine Phosphate, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome

    Sorry, in progress, not accepting new patients

    This phase I trial studies the side effects and how well pevonedistat, azacitidine, fludarabine phosphate, and cytarabine work in treating patients with acute myeloid leukemia or myelodysplastic syndrome that has come back (relapsed) or has not responded to treatment (refractory). Pevonedistat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as azacitidine, fludarabine phosphate, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and pevonedistat may work better in treating patients with acute myeloid leukemia or myelodysplastic syndrome.

    San Francisco, California and other locations

  • Phase I Trial of the Selective Inhibitor of Nuclear Export, KPT-330, in Relapsed Childhood ALL and AML

    Sorry, in progress, not accepting new patients

    This research study involves participants who have acute lymphoblastic or acute myelogenous leukemia that has relapsed or has become resistant (or refractory) to standard therapies. This research study is evaluating a drug called KPT-330. Laboratory and other studies suggest that the study drug, KPT-330, may prevent leukemia cells from growing and may lead to the destruction of leukemia cells. It is thought that KPT-330 activates cellular processes that increase the death of leukemia cells. The main goal of this study is to evaluate the side effects of KPT-330 when it is administered to children and adolescents with relapsed or refractory leukemia.

    San Francisco, California and other locations

  • Response-Based Chemotherapy in Treating Newly Diagnosed Acute Myeloid Leukemia or Myelodysplastic Syndrome in Younger Patients With Down Syndrome

    Sorry, in progress, not accepting new patients

    This phase III trial studies response-based chemotherapy in treating newly diagnosed acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Response-based chemotherapy separates patients into different risk groups and treats them according to how they respond to the first course of treatment (Induction I). Response-based treatment may be effective in treating acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome while reducing the side effects.

    Oakland, California and other locations

  • Risk-Adapted Chemotherapy in Treating Younger Patients With Newly Diagnosed Standard-Risk Acute Lymphoblastic Leukemia or Localized B-Lineage Lymphoblastic Lymphoma

    Sorry, in progress, not accepting new patients

    This partially randomized phase III trial studies the side effects of different combinations of risk-adapted chemotherapy regimens and how well they work in treating younger patients with newly diagnosed standard-risk acute lymphoblastic leukemia or B-lineage lymphoblastic lymphoma that is found only in the tissue or organ where it began (localized). Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy), giving the drugs in different doses, and giving the drugs in different combinations may kill more cancer cells.

    Oakland, California and other locations

  • Study of APVO436 in Patients With AML or MDS

    Sorry, not currently recruiting here

    The primary objective of the Phase 1 part of the study is to determine the recommended dose of APVO436 administered intravenously to patients with AML or MDS. The primary objective of the Phase 1b part of the study is to evaluate the clinical activity of APVO436 in patients with AML or MDS. APVO436 is being studied in this Phase 1b, open-label, multi-center, two-part dose-escalation/dose expansion study to evaluate the safety, pharmacokinetic/pharmacodynamic (PK/PD), and clinical activity of APVO436 in patients with AML and MDS. The study will be conducted in 2 parts. The first part of this Phase 1B study is an open-label, multiple dose ascending dose escalation phase to determine the recommended dose (RP2D) level of APVO436 for future Phase 2 studies. The goal of the dose expansion phase of the study (Part 2) is to (i) evaluate the safety and tolerability of APVO436 at the RP2D level when it is used as an adjunct to the standard of care and (ii) obtain a preliminary assessment of the anti-leukemia activity of APVO436-containing experimental monotherapy and combination therapy modalities. Study Objectives for Dose Escalation Phase - Primary Objectives are to: 1. Determine the RP2D level of APVO436 administered intravenously (IV) in patients with AML or MDS, and 2. Evaluate the safety and tolerability of APVO436 at the RP2D level when it is used as an adjunct to the standard of care and obtain a preliminary assessment of the anti-leukemia activity of APVO436-containing experimental monotherapy and combination therapy modalities. - Secondary Objectives are to: 1. Define the safety profile and immunogenicity of APVO436; to determine the PK/PD of APVO436; to evaluate the clinical activity of APVO436 in AML and MDS patients. 2. Further evaluate the safety profile and immunogenicity of APVO436 and the PK/PD of APVO436 and the relationship between PK/PD and clinical response. Study Objectives for Dose Expansion Phase - Primary Objective is to evaluate the safety and tolerability of APVO436 at the RP2D level when it is used as an adjunct to the standard of care. - Secondary Objective is to obtain a preliminary assessment of the anti-leukemia activity of APVO436-containing experimental monotherapy and combination therapy modalities.

    San Francisco, California and other locations

  • TAC/MTX vs. TAC/MMF/PTCY for Prevention of Graft-versus-Host Disease and Microbiome and Immune Reconstitution Study (BMT CTN 1703/1801)

    Sorry, in progress, not accepting new patients

    1703: The study is designed as a randomized, phase III, multicenter trial comparing two acute graft-versus-host disease (aGVHD) prophylaxis regimens: tacrolimus/methotrexate (Tac/MTX) versus post-transplant cyclophosphamide/tacrolimus/mycophenolate mofetil (PTCy/Tac/MMF) in the setting of reduced intensity conditioning (RIC) allogeneic peripheral blood stem cell (PBSC) transplantation. 1801: The goal of this protocol is to test the primary hypothesis that the engraftment stool microbiome diversity predicts one-year non-relapse mortality in patients undergoing reduced intensity allogeneic HCT.

    San Francisco, California and other locations

  • Tagraxofusp in Pediatric Patients With Relapsed or Refractory CD123 Expressing Hematologic Malignancies

    Sorry, not yet accepting patients

    Tagraxofusp is a protein-drug conjugate consisting of a diphtheria toxin redirected to target CD123 has been approved for treatment in pediatric and adult patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). This trial aims to examine the safety of this novel agent in pediatric patients with relapsed/refractory hematologic malignancies. The mechanism by which tagraxofusp kills cells is distinct from that of conventional chemotherapy. Tagraxofusp directly targets CD123 that is present on tumor cells, but is expressed at lower or levels or absent on normal hematopoietic stem cells. Tagraxofusp also utilizes a payload that is not cell cycle dependent, making it effective against both highly proliferative tumor cells and also quiescent tumor cells. The rationale for clinical development of tagraxofusp for pediatric patients with hematologic malignancies is based on the ubiquitous and high expression of CD123 on many of these diseases, as well as the highly potent preclinical activity and robust clinical responsiveness in adults observed to date. This trial includes two parts: a monotherapy phase and a combination chemotherapy phase. This design will provide further monotherapy safety data and confirm the FDA approved pediatric dose, as well as provide safety data when combined with chemotherapy. The goal of this study is to improve survival rates in children and young adults with relapsed hematological malignancies, determine the recommended phase 2 dose (RP2D) of tagraxofusp given alone and in combination with chemotherapy, as well as to describe the toxicities, pharmacokinetics, and pharmacodynamic properties of tagraxofusp in pediatric patients. About 54 children and young adults will participate in this study. Patients with Down syndrome will be included in part 1 of the study.

    San Francisco, California and other locations

  • Tretinoin and Arsenic Trioxide in Treating Patients With Untreated Acute Promyelocytic Leukemia

    Sorry, in progress, not accepting new patients

    This phase III trial studies tretinoin and arsenic trioxide in treating patients with newly diagnosed acute promyelocytic leukemia. Standard treatment for acute promyelocytic leukemia involves high doses of a common class of chemotherapy drugs called anthracyclines, which are known to cause long-term side effects, especially to the heart. Tretinoin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Arsenic trioxide may stop the growth of cancer cells by either killing the cells, by stopping them from dividing, or by stopping them from spreading. Completely removing or reducing the amount of anthracycline chemotherapy and giving tretinoin together with arsenic trioxide may be an effective treatment for acute promyelocytic leukemia and may reduce some of the long-term side effects.

    Oakland, California and other locations

  • Collecting and Storing Blood, Bone Marrow, and Other Samples From Patients With Acute Leukemia, Chronic Leukemia, or Myelodysplastic Syndromes

    Sorry, in progress, not accepting new patients

    As one of the nation's largest cooperative cancer treatment groups, the Alliance for Clinical Trials in Oncology (Alliance) is in a unique position to organize a Leukemia Tissue Bank. The member institutions diagnose hundreds of patients with leukemia or myelodysplastic syndrome each year, and uniformly treat these patients with chemotherapy regimens. The Alliance offers centralized data management for the clinical history, the classification of the leukemia and myelodysplastic syndrome, cytogenetics, flow cytometric analysis, treatment and follow-up. The highly skilled health care providers at each member institution are familiar with obtaining informed consent, completing data questionnaires and shipping specimens. There currently exists a central processing facility where samples are prepared for a variety of cellular and molecular studies. Hence, the patient resources, the health care providers, and a processing facility for a Leukemia Tissue Bank are all in place. What is needed, however, and is addressed in the current protocol, is a formal mechanism to procure bone marrow, blood and normal tissue from patients with hematologic malignancies who are to be enrolled on Alliance (Cancer and Leukemia Group B [CALGB]) treatment studies.

    San Francisco, California and other locations

  • Cytogenetic Studies in Acute Leukemia and Multiple Myeloma

    Sorry, in progress, not accepting new patients

    Chromosomal analysis or the study of genetic differences in patients previously untreated with AML, ALL, MDS or MM may be helpful in the diagnosis and classification of disease. It may also improve the ability to predict the course of disease and the selection of therapy. Institutions must have either an Alliance-approved cytogeneticist or an agreement from an Alliance-approved main member cytogenetics laboratory to enroll a patient on CALGB 8461. The Alliance Approved Institutional Cytogeneticists list is posted on the Alliance for Clinical Trials in Oncology website.

    San Francisco, California and other locations

  • Diagnostic Study of Patients With Acute Lymphoblastic Leukemia or Acute Promyelocytic Leukemia

    Sorry, in progress, not accepting new patients

    This research trial studies molecular genetic features in blood and tissue samples from patients with newly diagnosed acute lymphoblastic leukemia or acute promyelocytic leukemia. Studying samples of blood and tissue from patients with acute lymphoblastic leukemia or acute promyelocytic leukemia in the laboratory may help doctors identify and learn more about biomarkers related to cancer.

    San Francisco, California and other locations

  • Natural History and Biology of Long-Term Late Effects Following Hematopoietic Cell Transplant for Childhood Hematologic Malignancies

    Sorry, in progress, not accepting new patients

    This is a prospective non-therapeutic study, assessing the long-term toxicity of pediatric HCT for hematologic malignancies. This study is a collaboration between the Pediatric Blood and Marrow Transplant Consortium (PBMTC), the Center for International Blood and Marrow Transplant Research (CIBMTR), the National Marrow Transplant Program (NMDP) and the Resource for Clinical Investigation in Blood and Marrow Transplantation (RCI-BMT) of the CIBMTR. The study will enroll pediatric patients who undergo myeloablative HCT for hematologic malignancies at PBMTC sites.

    Oakland, California and other locations

  • Risk-Based Classification System of Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    Sorry, in progress, not accepting new patients

    This research trial studies a risk-based classification system for patients with newly diagnosed acute lymphoblastic leukemia. Gathering health information about patients with acute lymphoblastic leukemia may help doctors learn more about the disease and plan the best treatment.

    Oakland, California and other locations

  • Study of Blood and Bone Marrow Samples in Patients With Chronic Myelogenous Leukemia Enrolled on a CALGB Clinical Trial

    Sorry, in progress, not accepting new patients

    RATIONALE: Studying samples of blood and bone marrow from patients with cancer may help doctors identify biomarkers related to cancer.

    PURPOSE: This research study is looking at blood and bone marrow samples in patients with chronic myelogenous leukemia enrolled on a CALGB clinical trial.

    San Francisco, California and other locations

  • The Life After Stopping Tyrosine Kinase Inhibitors Study (The LAST Study)

    Sorry, in progress, not accepting new patients

    This is a non-randomized, prospective, single-group longitudinal study. The purpose of this study is to improve the decision making process used by physicians and patients when they are considering stopping their Tyrosine Kinase Inhibitor (TKI) medication.

    San Francisco, California and other locations

Our lead scientists for Leukemia research studies include .

Last updated: